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…la relación entre las propiedades de un sistema físico, por una parte y las proyecciones, por otra, hace 

posible una especie de cálculo lógico con éstas. 

VON NEUMANN, 1932 
 

Resumen. El objetivo de este trabajo es dar una presentación uniforme de lo que 
llamamos Lógica Quántica Operatoral,2 destacando, tanto su origen físico concreto, 
como su estructura puramente matemática. Para establecer un contexto a este tema, 
reseñamos algo de la evolución histórica de la Lógica Quántica, intentando mostrar 
cómo se han influenciado y enriquecido mutuamente, los aspectos físicos y mate-
máticos de la materia. 

Descriptores: Teoría Quántica, Lógica Quántica, Informática Quántica, Filosofía 
Práctica, Teoría de Categorías. 

 Abstract. The goal of this work is to provide a uniform presentation of what we 
call Operatoral Quantum Logic, emphasizing both its specific physical origin as its 
purely mathematical structure. To establish a context to this topic, we review some-
thing of the historical evolution of the Quantum Logic, trying to show how the 
physical and mathematical aspects of the subject have influenced and enriched each 
other. 

Keywords: Quantum Theory, Quantum Logic, Quantum Computing, Practical Phi-
losophy, Categories Theory. 

1. INTRODUCCIÓN 

                                           
1 Alberto R. Mejías E. es Licenciado en Matemáticas, egresado de la Facultad de Ciencias de la 
Universidad de los Andes (ULA) Mérida-Venezuela. Es profesor de Topología jubilado de la  
Universidad de los Andes. alrame59@gmail.com 

2 Es operatoral ¡no, operacional! porque se refiere a operadores, no a operaciones. 
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 El tema de la Lógica Quántica Operatoral (LQO) —situada en algún lugar 
de confluencia de matemáticas, física y filosofía— tiene una historia larga y com-
plicada y ha generado una literatura grande, dispersa y turbulenta.  No es algo fácil 
de explicar en pocas palabras ¡como se supone que debe de ser! 

 En nuestro mejor intento decimos que LQO comprende:  
(a) al hecho de que la estructura de los observables 2-valuados, en Mecánica 
Quántica Ortodoxa, puede ser útilmente, considerada como una Lógica Proposicio-
nal No-Clásica; 

(b) al intento de dar motivación independiente, de esta estructura, como parte de 
un programa general para interpretar Mecánica Quántica (MQ) y 

(c) a la rama de la matemática pura que ha surgido de (a) y (b) y ahora se refiere 
a una variedad de estructuras “ortomodulares”, generalización de la lógica de ob-
servables quánticos 2-valuados. 

 Sea lo que sea, Lógica Quántica (LQ) es una parte viva y creciente de Mate-
máticas Contemporáneas y Física Teórica —una que ha seguido manteniendo el in-
terés de un cuerpo de matemáticos, físicos y filósofos de la ciencia. Este interés 
sostenido, refleja en parte, al hecho de que las ideas básicas y el lenguaje de LQ 
producen información para la mayoría de las discusiones acerca de los engorrosos 
problemas sobre los fundamentos de MQ (de hecho, a un grado que, a menudo, no 
es reconocido, incluso, por los disertantes). Refleja, también, al hecho de que LQ 
ha generado una autónoma y fascinante rama de Matemática Pura, involucrada con 
una variedad de estructuras –retículos ortomodulares (ROM’s) y conjuntopos (con-
juntos parcialmente ordenados), ortoálgebras, álgebras BOOLE parciales, etc.–– que 

generalizan al retículo P(H) de las proyecciones en un espacio HILBERT H. Por úl-

timo, la llegada de Computación Quántica (CQ) y Teoría de Información Quántica 
(TIQ) ofrece un campo de aplicaciones prácticas de LQ, que todavía tiene que ser 
explorado. 

 Históricamente, LQ deriva de la observación (más que casual) por VON NEU-
MANN, de que los observables 2-valuados, representados en su formulación mecá-
nico-quántica, por operadores proyecciones, constituyen una especie de “lógica” de 
proposiciones experimentales. Esta idea fue proseguida por BIRKHOFF y VON NEU-

MANN.  

 Después de dos décadas de abandono, el interés por LQ fue revivido, debido 
en gran parte al análisis por MACKEY, del Cálculo Probabilístico de la Teoría Quán-
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tica Estándar, acoplado con su Teoría de Representaciones Inducidas.   

 El desarrollo posterior del tema ha ocurrido en varios niveles y en variadas 
direcciones. El trabajo de MACKEY fue ampliado significativamente por PIRON, cu-
yos Teorema de Representación y marco axiomático proporcionaron mucho impul-
so para el desarrollo posterior. Al mismo tiempo, la insatisfacción con el marco 
axiomático debido a MACKEY, condujo a una búsqueda de fundamentos más primi-
tivos y más concretamente operatorales. Aquí destaca la labor de FOULIS y RAN-

DALL y también la de LUDWIG y sus colegas en Marburgo.  

 El trabajo en Física Fundamental también ha estimulado y ha estado estimu-
lado por, la investigación puramente matemática; en particular, en el desarrollo de 
una teoría abstracta de ROM´s y, en los últimos años, estructuras más generales 
como ortoálgebras y álgebras de efectos. Más recientemente aún, el tema ha visto la 
aplicación de poderosas técnicas de Teoría de Categorías. 

 Dada la variedad algo abrumadora de estos progresos, en este ensayo intro-
ductorio, vamos a intentar un esbozo de LQ, que podría ayudar a los lectores que 
no son expertos en la materia, a entender los diversos documentos que se producen 
y también, a verlos como pertenecientes a un tema común. 

 Empezamos comentando el trabajo seminal de BIRKHOFF y VON NEUMANN y 
su desarrollo por MACKEY. Luego, pasamos a una breve exposición del Teorema de 
Representación, de PIRON y su marco axiomático, refiriendo al lector a [COECKE 
and MOORE, 2000] y [VALCKENBORGH, 2000] para exposiciones en un lenguaje ca-
tegorial (de Teoría de Categorías) más actualizado. A continuación, se discute el 
trabajo de FOULIS y RANDALL; en particular, su introducción de la noción de ortoál-
gebra y su observación de que los productos tensoriales de conjuntopos ortomodu-
lares (COM’s), generalmente existen sólo como ortoálgebras. El formalismo 
FOULIS-RANDALL se discute detalladamente en [WILCE, 2000]. 

 Seguimos con una exposición general de la teoría matemáticamente pura, de 
estructuras ortomodulares. Para más detalles sobre ROM’s, ver a [BRUNS and HAR-

DING, 2000], para observables en COM’s, a [PTAK, 2000] y para representaciones de 
grupos sobre álgebras de efectos, a [FOULIS, 2000]. 

 Por último, consideramos a la noción de enriquecimiento categorial y la teo-
ría de quantales, revisados, respectivamente, en [BORCEUX and STUBBE, 2000] y 
[PASEKA and ROSICKÝ, 2000], antes de introducir los aspectos informáticos y lin-
güísticos, tratados, respectivamente, en [RESENDE, 2000] y [GUDDER, 2000]. 
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2. MECÁNICA QUÁNTICA VON NEUMANN 
 Aunque existían tratamientos matemáticos precisos de MQ, antes del tratado 
monumental de JOHANN VON NEUMANN [1932]; razonablemente, se podría argu-
mentar que este trabajo fijó, de una vez por todas, el marco teórico de Teoría Quán-
tica Estándar, en el que cada sistema mecánico-quántico está asociado a un espacio 

HILBERT H, cada vector unitario ψ ∈ H, determina un estado del sistema y cada 

cantidad física observable, asociada con el sistema está representada por un opera-
dor autoadjunto A sobre H. El teorema espectral nos dice que un tal operador está 
asociado con una medida espectral 

PA: B(R) → P(H), 

que asigna a cada conjunto BOREL real B, un operador proyección PA(B) sobre H. 

 Para cualquier vector unitario ψ ∈ H, la cantidad 

µA, ψ
(B) := 〈PA(B) ψ, ψ〉 

define una medida de probabilidad sobre la recta, que VON NEUMANN considera que 
da la probabilidad de que el observable (representado por) A tiene un valor en el 

conjunto B, cuando el estado del sistema es (representado por) ψ. 

 Si la función identidad tiene varianza finita en µA, ψ
, ψ está en el dominio de 

A y el valor esperado de A con respecto a ψ, está dado por 

Exp(A, ψ) = ∫
R

sd µA, ψ
(s). 

Se comprueba fácilmente, que esto funciona para Exp(A, ψ)  = 〈A ψ, ψ〉. 

2.1. Lógica de Proyecciones 
 Si Mathematische Grundlagen der Quantenmechanik (Fundamentos Mate-

máticos de Mecánica Quántica) había señalado el paso a la madurez de la MQ, se-
ñaló también el nacimiento de la LQ. Evidentemente, es la medida con valores pro-
yecciones PA, más que el operador A, lo que lleva más directamente a la interpreta-

ción estadística de la MQ, descrita anteriormente. Ahora, como anota VON NEU-

MANN, cada proyección P ∈ P(H), define un observable —uno con los valores 0 y 

1. Si P = PA(B) es la proyección espectral asociada con un observable A y un con-

junto BOREL B, podemos interpretar a este observable como “prueba de ensayo” de 
si A toma o no, un valor en B. 
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 VON NEUMANN considera que P representa a una propiedad física del sistema 
(o mejor dicho, de los estados del sistema). Comenta: 

“la relación entre las propiedades de un sistema físico, por una parte y las 
proyecciones, por otra, hace posible una especie de cálculo lógico con éstas. 
Sin embargo, en contraste con los conceptos de la lógica ordinaria, este sis-
tema se extiende por el concepto de ‘Decidibilidad simultánea’, que es carac-
terístico de la Mecánica Quántica.” [VON NEUMANN, 1932, p. 253]. 

 En efecto, si P y Q son proyecciones conmutativas, entonces su junta P ∨ Q 

y su concurrencia P ∧ Q, en el retículo P(H), pueden interpretarse clásicamente, co-

mo la representación de la opción y de la conjunción entre las propiedades codifica-
das por P y Q;  Además, la proyección P' = 1 − P sirve como una especie de nega-
ción de P. Sin embargo, si P y Q no conmutan, entonces no son “simultáneamente 

decidibles” y el significado de P ∧ Q y de P ∨ Q es menos claro. No obstante, P(H) 

conserva muchos elementos de un álgebra BOOLE y puede ser considerado como un 

modelo algebraico para una lógica proposicional no-clásica. En particular, P(H) es 

ortocomplementado y, por tanto, satisface leyes análogas a las de DE MORGAN; más 
precisamente, el sub-ortoretículo generado por cualquier familia de proyecciones 
mutuamente conmutativas, es un álgebra BOOLE. 

2.2. Lógica de Mecánica Quántica 
 Cabe destacar que VON NEUMANN habla de la simultánea “decidibilidad” (es 
decir, ensayabilidad) de propiedades, pero no distingue entre propiedades decidi-
bles e indecidibles per se. Clásicamente, por supuesto, cualquier subconjunto del 
espacio de estados, cuenta como una propiedad categórica del sistema y nada, en 
principio, nos impide tener la misma opinión en MQ. Sin embargo, sólo los sub-
conjuntos del espacio de estados, correspondientes a subespacios lineales cerrados, 
del espacio HILBERT, son asociados con observables y, así, “decidibles” por medi-
ción. Si se adopta un positivismo bastante severo, según el cual ninguna proposi-
ción no decidible es significativa, se llega a la doctrina aparentemente extraña, de 
que, para un sistema mecánico-quántico, el conjunto de propiedades significativas 

forma, no a un álgebra BOOLE, sino, más bien, al retículo P(H) de las proyecciones 

en un espacio HILBERT H. Esta idea fue desarrollada por VON NEUMANN en un do-
cumento conjunto con GARRETT BIRKHOFF, titulado The Logic of Quantum Mecha-

nics [BIRKHOFF and VON NEUMANN, 1936]. 
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 BIRKHOFF y VON NEUMANN observan que P(H) conserva muchas de las ca-

racterísticas familiares del álgebra de la lógica proposicional clásica —en particu-
lar, es ortocomplementado y por lo tanto, cumple con las leyes DE MORGAN.  Sin 
embargo, no es BOOLE; es decir, falla la Ley distributiva. 

 BIRKHOFF y VON NEUMANN llegan a sugerir que 

“mientras que los logicistas generalmente, han asumido que las propiedades 
L71-L73 de negación fueron las menos susceptibles de soportar un análisis 
crítico, el estudio de la mecánica apunta a las identidades distributivas L6 
como el eslabón más débil en el álgebra de la lógica.” [Birkhoff and von 
Neumann, 1936, p. 839]. 

 Como veremos en Sección 7, esta observación es algo más profunda que lo 
que uno pueda imaginar, siendo interpretable en términos de la diferencia funda-
mental entre álgebras HEYTING y ROM’s considerados como generalizaciones de 
álgebras BOOLE. Esta insinuación de que el retículo de proyecciones puede verse 
como una lógica proposicional, se ha entendido en un número de maneras muy di-
ferentes. Algunos la han visto como cuestionamiento de la corrección de la lógica 
clásica. Otros la han visto como que implica una menos drástica modificación de la 
teoría clásica de probabilidades. Como hemos visto, VON NEUMANN mismo [1932 
§3.5], es bastante cauteloso, destacando que la equivalencia entre subespacios y 
proyecciones induce a una especie de cálculo lógico. Del mismo modo, BIRKHOFF y 
VON NEUMANN [1936 §0] concluyen que, mediante argumentos heurísticos, se pue-
de, razonablemente, esperar encontrar un cálculo de proposiciones para sistemas 
mecánico-quánticos que es formalmente, indistinguible del cálculo de subespacios 
y se asemeja al habitual cálculo lógico. 

 Más radical es la opinión de FINKELSTEIN [1968, 1972], de que la lógica es, 
en cierto sentido, empírica; una opinión defendida por luminarias filosóficas tales 
como PUTNAM [1968, 1976]. FINKELSTEIN destaca las abstracciones que hacemos al 
pasar de la mecánica a la geometría y a la lógica y sugirió que los procesos dinámi-
cos de fractura y flujo, ya observados en los dos primeros niveles, también deben 
presentarse en el tercero.  

 PUTNAM, por otra parte, sostiene que las patologías metafísicas de superposi-
ción y complementariedad no son más que objetos de contradicciones lógicas gene-
radas por un uso indiscriminado de la ley distributiva. 

 Este punto de vista de la materia, que sigue siendo popular en algunos reduc-
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tos,3 depende de una lectura de la proyección P como codificación de una propie-

dad física del sistema quántico y, en el supuesto de que sólo las propiedades físicas 
cuentan, en última instancia, como significativas (o en cualquier caso, como funda-
mentales). Sin embargo, hay una forma diferente de interpretar a P; a saber, que co-
difica a una declaración sobre el posible resultado de una “medición”. Así, si A es 
el operador autoadjunto correspondiente al observable A y P = PA(B), es la proyec-

ción espectral de A, correspondiente al conjunto BOREL B, se podría interpretar a P 
como codificación de la proposición de que, si se hace, una medición de A  produ-

ciría un valor en B. Esta interpretación, usualmente denominada operacional, guio 
a MACKEY en su reconstrucción de la Mecánica Quántica VON NEUMANN (MQVN), 
a la que pasamos ahora. 

3. EL PROGRAMA MACKEY   
 En un influyente artículo [1957], posteriormente ampliado en una monogra-
fía [1963], GEORGE MACKEY argumentó:  
(a) que se podría reconstruir mayormente, si no todo, el aparato de la MQVN, a 
partir de la premisa de que las proposiciones experimentales forman un ortoretículo 

isomorfo a P(H)  

y  
(b) que esta misma premisa podría estar motivada independientemente, por con-
sideraciones muy generales sobre cómo se deben considerar modelos probabilísti-
cos de sistemas físicos. 

3.1. Mecánica Quántica como Cálculo de Probabilidades 
 MACKEY interpretó MQ como si fuera simplemente, un cálculo de probabili-
dades no clásico, en el cual el álgebra BOOLE de eventos, de la Teoría Clásica de 

Probabilidades, se sustituye por el retículo P(H). Más exactamente, MACKEY hizo 

hincapié en que tanto los estados, como los observables de un sistema mecánico-

                                           
3 Por ejemplo, BAMBERG y STERNBERG [1990, pp. 833-835] escriben: "de hecho, [la Mecánica 
Quántica] representa la revolución más profunda en la historia de la ciencia, porque modifica las 
normas elementales de la lógica. . . . La ley distributiva no se mantiene en Lógica Quántica. 
Como mencionamos anteriormente, la validez de la MQ se ha demostrado experimentalmente, 
una y otra vez durante los últimos sesenta años. Así que el experimento ha demostrado que se 
debe abandonar uno de los más preciados principios de lógica, cuando se trata con observables 
cuánticos." 
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quántico, pueden definirse, exclusivamente, en términos de P(H).  

 En primer lugar, cualquier estado estadístico W determina una medida de 

probabilidad en P(H), a saber, la asignación 

ωW: P(H) → [0, 1];      P → tr(PW). 

Un profundo teorema debido a Gleason [Gleason, 1957; DVUREČENSKIJ, 1993] 

muestra que, recíprocamente, cada medida de probabilidad, σ-aditiva en P(H) tiene 

esta forma. 

 En segundo lugar, un observable con valores en el espacio medible (S, F), se 

puede representar por una medida proyecto-valuada (con valores proyecciones)  

M: F → P(H), 

donde, para cada conjunto medible B ∈ F, la proyección M(B) se toma para codifi-

car la “proposición experimental”: ‘una medición del observable da un valor en el 

conjunto B’.  Evidentemente, podemos retrotraer medidas de probabilidad en P(H), 

a lo largo de M, para obtener una medida de probabilidad clásica, sobre F.  Inter-

pretamos que M*(ω) = ω ○ M, da la distribución estadística de los valores de M(S) 
cuando el sistema está en el estado representado por ω. En otras palabras, 

ωW(M(B)) = tr(M(B)W), 

representa la probabilidad de que el observable representado por M producirá un 
valor en el conjunto B, si se mide, cuando el estado del sistema se representa por W. 

 Esto conecta con la teoría VON NEUMANN de representación de observables 

como operadores, en forma natural, como sigue: Si f: S → R es cualquier variable 

aleatoria real, acotada, clásica, definida en S, podemos definir al operador autoad-
junto 

Af  := ∫S  f(s)dM(s), 

en la forma habitual.4 Así, para cualquier medida de probabilidad µ en P(H), tene-

                                           
4 Si f es no negativa, entonces A

f
 viene dado por el supremo de los operadores A

ɡ
 = Σ

i
 ɡ

i
M(B

i
), 

donde ɡ = Σ
i
 ɡ

i
 χB

i 
es una variable aleatoria simple, con 0 ≤ ɡ ≤ f. 
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mos 
EM*(µ)(f ) = ∫S  f(s)dM*(µ)(s) = tr(Af W), 

donde W es el operador densidad, correspondiente a µ.  

 Este punto de vista de la MQ es sorprendentemente poderoso.  

 El teorema GLEASON, junto con el teorema espectral, los resultados clásicos 
de STONE, WIGNER, WEYL y VON NEUMANN y el propio trabajo de MACKEY sobre 
representaciones unitarias inducidas, permiten esencialmente, derivar todo el apa-
rato de MQ no relativística (incluyendo su dinámica unitaria, las RCC’s, etc.), a 
partir de la premisa de que la lógica de proposiciones experimentales está represen-

tada por el retículo de proyecciones P(H). Para un esbozo de esta reconstrucción, 

véase [MACKEY, 1963] o [BELTRAMETTI y CASSINELLI, 1981]; para un recuento de-
tallado, ver [VARADARAJAN, 1968]. 

3.2. Axiomática MACKEY  
 No obstante su éxito, la consideración MACKEY de MQ como cálculo de pro-
babilidades todavía se basa en un innegable elemento ad hoc: el espacio HILBERT 
H, mismo. En efecto, una vez que se juega con la idea de que las proposiciones 
contrastables asociadas a un sistema físico, no tienen que formar un álgebra BOOLE; 
se abre la puerta a una gran variedad de otras posibilidades.  Entonces se convierte 
en un asunto de urgencia, entender por qué la naturaleza (o alguien) debería esco-
ger modelar sistemas físicos en términos de retículos de proyecciones de espacios 
HILBERT, en lugar de algo más general. MACKEY esbozó un ambicioso programa 
para hacer esto, deduciendo el modelo de espacio HILBERT, a partir de un conjunto 
de axiomas más primitivos e, idealmente, más transparentemente plausibles, para 
un cálculo de eventos. 

 El marco que adopta MACKEY, es una estructura abstracta (O, S, p), donde O 

representa al conjunto de los “observables” con valores reales y S al conjunto de 

“estados” de un sistema físico. Éstos están conectados por una asignación 
p: O × S → ∆: (A, s) ֏ pA( · |s) , 

donde ∆ es el conjunto de medidas BOREL de probabilidad, sobre la recta. La inter-
pretación prevista es que pA( ·  |s) da la distribución estadística de los valores de una 

medición del observable A ∈ O, cuando el sistema está en el estado s ∈ S. Podemos 

tomar el par (A, B), donde A ∈ O y B es un conjunto BOREL real, para representar a 
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la “proposición experimental” de que una medición de A da (daría, ha dado) un va-
lor en B. MACKEY considera a dos de tales proposiciones, equivalentes syss tienen 
la misma probabilidad en cada estado —en otras palabras, (A1, B1) y (A2, B2) son 

equivalentes syss las asignaciones asociadas PAi
, Bi

: = pAi
 (Bi | ·  ) son iguales. El 

conjunto L de tales asignaciones PA, B, que él llama cuestiones, es Lógica Quántica 

MACKEY. 

 Ahora, ordenado puntualmente sobre S, el conjunto L es un conjuntopo orto-

complementado con unidad 1 dada por PA, R
 para cada observable A, cuya ortocom-

plementación viene dada por P′A, B = 1 − PA, B = PA, R \ B
. Digamos que las cuestiones 

P, Q ∈ L son compatibles syss P = PA, B y Q = PA, C para algún observable común A 

y algún par de conjuntos BOREL B y C. Entonces podemos considerar a P y Q como 

“simultáneamente medibles”. Además, digamos que las cuestiones P, Q ∈ L, son 

ortogonales (o “disjuntas”, en lenguaje MACKEY) syss P ≤ Q′. En tal caso, escribi-
mos P ⊥ Q. En este punto MACKEY impone su 
 Axioma V: Si Pi es una familia contable de elementos mutuamente ortogona-

les, en L, entonces existe un elemento P ∈ L tal que P = P1 + P2 + ·  ·  ·. 

Este axioma garantiza que L es un conjuntopo σ-ortomodular ó un σ-conjuntopo or-
tomodular (σ-COM) —es decir, L satisface las dos condiciones 

(a) Cada familia contable de elementos mutuamente ortogonales Pi ∈ L tiene una 

junta (mínima cota superior)  ⋁i Pi en L y 

(b) Si P ≤ Q, entonces (Q ∧ P′) ∨ P = Q. 
 En cualquiera de tales conjuntopos L, se pueden definir medidas de probabi-

lidad, mediante asignaciones µ: L → [0, 1] tales que µ(1) = 1 y, para cualquier fa-

milia contable de elementos mutuamente ortogonales, Pi ∈ L, se tiene µ(⋁i Pi) = 

Σi µ(Pi). También podemos definir, dados dos cualesquiera σ-COM L y M, una me-

dida M-valuada en L, como una asignación α: L → M tal que α(1L) = 1M y, para 

cualquier familia contable de elementos mutuamente ortogonales, Pi ∈ L, tenemos 

α(⋁i Pi) = ⋁i α(Pi). Para una discusión general de dichas asignaciones en términos 
de observables, ver [PTÁK 2000].   
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 Volviendo ahora al COM de cuestiones, L, MACKEY observa que 

(a) Cada estado s ∈ S, define una medida de probabilidad ɵs: L → [0, 1] por eva-

luación: 
ɵs(PA, B) = PA, B(s) = pA(B|s). 

(b) Cada observable A ∈ O, define una medida L-valuada PA: B(R) → L, vía 

PA(B) = PA, B, sobre los conjuntos BOREL reales (que, constituyendo un σ-algebra 

BOOLE, constituyen, sin duda, un σ-COM). 
Recíprocamente, supongamos que L es cualquier σ-COM, y que S es cualquier 

conjunto de medidas de probabilidad sobre L, que determinan orden —es decir, 

µ(p) ≤ µ(q) para todo µ ∈ S, implica p ≤ q. Sea O el conjunto de todas las medidas 

BOREL L-valuadas en la recta y definamos p: O × S → ∆(R) por pα(B|µ) = µ(α(B)). 

Entonces la estructura (O, S, p) satisface los axiomas MACKEY, y, además, el COM 

de cuestiones construido a partir de ella, es canónicamente isomorfo a L. 

 Como se ha observado [FOULIS 1962; GUDDER 1965], los axiomas MACKEY 
definen la teoría de estructuras determinadas por pares (L, ∆) donde L es un σ-
COM y ∆ es una familia de medidas de probabilidad que determinan orden sobre L.  
Dichos pares (habitualmente denominados lógicas cuánticas en la literatura mate-
mática en las décadas de 1960 y 1970) han sido estudiados intensamente por mu-
chos autores. Para discusiones detalladas de COM en el contexto de LQ ver [BEL-

TRAMETTI y CASSINELLI 1981; GUDDER 1985; PTÁK 2000; PTÁK y PULMANNOVÁ 

1991]. Por supuesto tales LQ’s están todavía muy lejos de la LQ estándar P(H). 

Entre otras cosas, el COM P(H) es un retículo completo: existen juntas arbitrarias, 

no sólo juntas ortogonales contables. Aun así, se podría esperar que un análisis más 
profundo — quizás involucrando axiomas adicionales — pudiera conducir a una 
caracterización significativa y, lo ideal, a una motivación para la LQ estándar. Este 
fue el objetivo expreso de MACKEY: 

“Idealmente, uno quisiera tener una lista de suposiciones físicamente plausi-
bles, de la cual se pudiera deducir [el modelo de espacio Hilbert]. Debajo de 
esto, uno quisiera una lista de la cual se pudiera deducir un conjunto de posi-
bilidades..., todas, salvo una, de las cuales podrían ser demostradas incompa-
tibles con experimentos debidamente planificados. Por el momento, dichas 
listas no están disponibles.” [MACKEY 1963, p. 72] 

Este tema se encuentra en el corazón de la axiomatización original de PIRON, que se 
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discutirá en la próxima sección. Por otro lado, como discutiremos en las secciones 
5 y 6, el estudio autónomo de dichas estructuras conduce naturalmente a más gene-
ralizaciones, en particular, a ortoálgebras y álgebras de efectos. Ahora, antes de de-
dicarnos a una rápida revisión de algunos de los acontecimientos importantes ocu-
rridos desde la obra fundamental de MACKEY, hagamos algunos comentarios. 

 En primer lugar y ante todo, la característica principal que separa al forma-
lismo MACKEY de las tendencias actuales en LQO, es la dependencia del primero, 
de la probabilidad como un concepto primitivo. Mientras que se han hecho avances 
importantes en este contexto, por ejemplo en [PULMANNOVÁ, 1986 a, b;  GUDDER y 
PULMANNOVÁ, 1987; PULMANNOVÁ y GUDDER, 1987], los trabajos más contempo-
ráneos relegan  la probabilidad a una noción derivada.5 Esto no quiere decir que los 
estados estadísticos son insignificantes en LQO. Sin embargo, han pasado de la si-
tuación de un concepto primitivo algo vagamente interpretado, a la de un instru-
mento estructural bien definido. Aquí puede hacerse mención de la caracterización 
de los espacios de estados de la LQ estándar, que culmina en la prueba por NAVA-

RA, de la independencia del grupo de automorfismos, del centro y del espacio de es-
tados, de una lógica cuántica [Navara 1992]. Una excepción notable a esta tenden-
cia es la teoría de efectos de decisión, introducida por GÜNTHER LUDWIG durante la 
revisión de su texto clásico [1954, 1955]. Este trabajo se basa en la clasificación de 
nociones macroscópicas en piezas preparativas y efectivas que participan en las in-
teracciones de medición mediadas por portadores de acción. 

  No entraremos en los detalles del esquema axiomático de LUDWIG, sucesi-
vamente refinado en [LUDWIG, 1964, 1967, 1968; DÄHN, 1968; MIELNIK 1968, 
1969; STOLZ 1969, 1971; DÄHN, 1972; LUDWIG, 1972] y codificado en el monu-
mental tratado [LUDWIG, 1985, 1987], sino que nos remitiremos a algunas observa-
ciones generales. La noción primitiva de esta teoría es la de una relación de proba-
bilidad definida sobre el producto cartesiano del conjunto de ensambles y el con-
junto de efectos; estos dos conjuntos se toman como inmersos en un conveniente 
par de espacios BANACH.  
                                           

5 Por ejemplo, mientras que en [PIRON, 1964 §7], la probabilidad generalizada se discute como 
una útil heurística física, en [JAUCH y PIRON, 1969 §5] los estados se definen como conjuntos 
maximales de propiedades reales del sistema. Del mismo modo, mientras que el formalismo 
introducido en [RANDALL y FOULIS, 1970;  FOULIS y RANDALL, 1972; RANDALL y FOULIS, 1973] 
se refiere explícitamente a estadísticas operatorales, en [FOULIS, PIRON y RANDALL, 1983; 
RANDALL y FOULIS, 1983; FOULIS, GREECHIE y RÜTTIMANN, 1992, 1993] se pone énfasis en el 
concepto de estados en términos de concomitancias en el espacio de resultados asociado al 
sistema.  
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 En algún sentido, entonces, la obra de LUDWIG y sus colaboradores corre pa-
ralela al campo de LQO tal como la hemos presentado, centrándose más en la es-
tructura analítica funcional del problema que en sus aspectos algebraicos ordena-
dos.  Como tal quizá tiene una relación más formal con la teoría cuántica algebrai-
ca, de SEGAL [1947] y  de HAAG y KASTLER [1964], que con las teorías operatorales 
de PIRON y FOULIS-RANDALL que se debatirán a continuación.  

 Sin embargo, una característica física notable del trabajo de LUDWIG es que 
trata de lidiar con la noción de mediciones no ideales, utilizando operadores sub-
proyectivos. Nótese que dichos operadores aparecen naturalmente en las discusio-
nes de localizabilidad generalizada [JAUCH y PIRON, 1967; AMREIN, 1969].  

 Para revisiones generales de diferentes aproximaciones a la Mecánica Quán-
tica Operatoral, ver [GUDDER, 1977, 1979, 1981; LUDWIG y NEUMANN, 1981], para 
un análisis detallado de la relación entre los enfoques de PIRON y LUDWIG ver 
[CATTANEO y LAUDISA, 1994; CATTANEO y NISTICÒ, 1993] y para tener una visión 
general de la aplicación de medidas positivas con valores operadores, a cuestiones, 
en fundamentos de MQ véase [BUSCH, LAHTI y MITTELSTAEDT, 1991; SCHROECK, 
1996]. 

4. EL TRABAJO DE PIRON 
 CONSTANTIN PIRON [1964] realizó un progreso significativo en ambos extre-
mos del problema de completar y ampliar el programa MACKEY, lo cual se desarro-
lló en lo que se conoce como el enfoque de la Escuela de Ginebra, de la Física 
Quántica. 

 PIRON caracterizó abstractamente, a los ROM’s completos representables co-
mo retículos de subespacios cerrados de espacios HILBERT generalizados. También 
proveyó un análisis profundo de las ideas físicas básicas de MQ que ayudaron a 
motivar a los supuestos necesarios en su teorema de representación, como axiomas 
generales razonables. En esta sección se describe una versión formal de estos axio-
mas en el espíritu de [PIRON, 1976], antes de hacer algunas observaciones sobre a-
contecimientos más recientes. 

4.1. El Teorema de Representación 

 El retículo de proyecciones P(H) tiene una estructura mucho más regular que 

el general COM proporcionado por los axiomas MACKEY.  En particular, P(H) 

(a) es un retículo completo —es decir, existen la concurrencia y la junta para 
cualquier subconjunto de L;  
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(b) es atomístico —es decir, cada elemento de P(H) es la junta de los átomos 

(aquí, las proyecciones unidimensionales) por debajo de él; 

(c) cumple con la ley del cubrimiento atómico: si P ∈ P(H) es un átomo y Q ∈ 

P(H), entonces P ∨ Q cubre a Q, es decir, es un átomo en el retículo {M ∈ L| Q ≤ 

M}; 
(d) es irreducible —es decir, no puede factorizarse como producto directo no tri-

vial. Equivalentemente, ningún elemento de P(H), que no sea 0 ó 1, conmuta con 

todos los demás elementos.6 

 En su tesis [PIRON, 1964], PIRON probó un recíproco parcial, es decir que to-
dos los retículos L (de longitud suficiente) pueden ser interpretados como conjuntos 
de subespacios biortogonales, de un espacio HILBERT generalizado. Explícitamente, 
considerando la (esencialmente) única inmersión de L en una geometría proyectiva, 
que preserva la concurrencia y los átomos y aprovechando la realización de espacio 
vectorial estándar de las geometrías proyectivas de dimensión, por lo menos, tres, 
mostró que la imagen del retículo original podría caracterizarse por una forma her-
miteana definida.7 

                                           

6 Desde luego, no todo sistema mecánico-quántico es irreducible; sino que, en general, se des-
compone en una familia de sistemas puramente cuánticos, indizados por reglas de 

superselección. Por ejemplo, [Piron 1964] muestra que cada ROM que satisface los axiomas (a) – 
(c) es unión directa de una familia de retículos irreducibles, siendo su geometría proyectiva unión 
directa de las geometrías correspondientes. Abstractamente, los sistemas con reglas de superse-
lección discretas, pueden ser tratados tomando medidas con valores proyecciones, en un a-
propiado álgebra VON NEUMANN A. Si el ROM inducido L(A) no contiene a un sumando de tipo 

I2, entonces se aplica el teorema GLEASON: cada medida σ-aditiva de probabilidad en L(A) se 

extiende únicamente a un estado normal sobre A [CHRISTENSEN, 1982; YEADON, 1983]. Para ma-

yor discusión véase, por ejemplo, [BUNCE y HAMHALTER, 1994; BUNCE y WRIGHT, 1994; 
HAMHALTER, 1993, 1995]. 

7 Este desarrollo se ha hecho mucho más físicamente transparente y matemáticamente elegante  a 
partir del trabajo seminal de FAURE y FRÖLICHER [1993, 1994, 1995], donde la construcción de 
representaciones lineales para las geometrías proyectivas y sus morfismos es elaborada de una 
manera categorialmente natural. Por ejemplo, una relación de ortogonalidad determina un 
morfismo de la geometría proyectiva a su dual y así, una aplicación cuasilineal del espacio 
vectorial subyacente a su dual. De esta manera el producto interno de la MQ, obtiene una base 
rigurosa y limpia. 
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 Ahora, para un arbitrario espacio producto interno, V, el ortoretículo atomís-
tico completo L(V) de subespacios biortogonales, no tiene que ser ortomodular. 
Cuando lo es, V se denomina espacio Hilbert generalizado. Esta terminología está 
motivada por otro resultado llamativo; a saber, si V es un espacio producto interno 

sobre uno de los anillos de división, estándar (es decir, R, C ó H), entonces L(V) es 

ortomodular syss V es completo. Esto fue probado primero por PIRON, usando una 
hipótesis sobre extensiones de medidas, que resultó ser independiente de la Teoría 
de Conjuntos ZF; bajo influjo de STONE, más tarde, una prueba geométrica fue ob-
tenida por AMEMIYA y ARAKI [1965].8 Finalmente, diremos que el formalismo de la 
Escuela de Ginebra, que fue inspirado por este teorema, ha sido ampliamente apli-
cado a varios problemas de carácter más o menos concreto, por ejemplo, simetrías 
[EMCH y PIRON, 1962, 1963], reglas de superselección [PIRON, 1965, 1969], obser-
vables [PIRON, 1971; GIOVANNINI y PIRON, 1979; GIOVANNINI, 1981a, b, c], proba-
bilidad a priori [PIRON, 1972] y procesos irreversibles [GISIN y PIRON, 1981; GISIN, 
1981, 1982 a, b, 1983 a, b]. 

4.2. Axiomática PIRON  
 Los axiomas MACKEY producen sólo un COM σ-completo L —lo cual dista 
mucho del ROM ortomodular atomístico completo, considerado en el Teorema de 
PIRON. PIRON fue capaz de motivar la estructura adicional necesaria en el contexto 
de un marco axiomático similar al MACKEY, pero difiriendo de él, en que toma co-
mo básico, no el concepto de probabilidad, sino un concepto de propiedad física, 
basado en la certidumbre de obtener un resultado experimental. Aquí PIRON, cons-
cientemente, aprovecha el trabajo de DIRAC [1930 §1.2], que da una discusión ope-
ratoral de la polarización de la luz, en términos de la certidumbre o, de otra manera, 
del  paso a través de un cristal apropiado y la concepción de EINSTEIN, PODOLSKY y 
ROSEN [1935], de que los elementos de la realidad son condiciones suficientes para 
que uno sea capaz de predecir una cantidad física con certidumbre y sin perturbar al 
sistema. 

                                           

8 Téngase en cuenta que recientemente, se han encontrado condiciones necesarias y suficientes 
para que el anillo de división subyacente sea estándar —una de las declaraciones más simples en 
el caso infinito dimensional, es que el espacio vectorial admite una sucesión ortonormal infinita 
[SOLÈR, 1995; HOLLAND, 1995; PRESTEL, 1995]; para ver un ejemplo de un espacio HILBERT 
generalizado no estándar, ver [KELLER, 1980], para una discusión detallada de la geometría de los 
espacios HILBERT generalizados, ver [GROSS, 1979, 1990] y, para una reseña de otros resultados 
de compleción, ver [DVUREČENSKIJ, 1992]. 
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 PIRON comienza con un conjunto primitivo Q de cuestiones —que represen-

tan proyectos experimentales definidos, que tienen sólo dos resultados posibles, 
que designamos como sí y no. Para facilitar la presentación consideremos dado, un 

conjunto P de procedimientos de preparación.9 Para P ∈ P y α ∈ Q, escribimos P 

⊨ α para indicar que la preparación P es tal, que puede predecirse con certidumbre, 

que la respuesta a la cuestión α, es sí. Entonces podemos asociar, a cada cuestión α, 
la proposición 

[α] = {P ∈ P | P ⊨ α}. 

Sea L ≔ {[α] | α ∈ Q } el conjunto de todas esas proposiciones, considerado como 

conjuntopo con respecto a la inclusión de conjuntos. Nótese que [α] ⊆ [β] syss cada 
preparación que hace válida a α, también hace válida a β. PIRON procede a aducir 
varios axiomas cuya fuerza es la de hacer a L un ROM atomístico completo, que 

satisface la ley de cubrimiento. 

L es un retículo completo. El primero y, probablemente el más novedoso, de estos 

axiomas; involucra la noción de cuestión producto. Dado un conjunto no vacío de 

cuestiones, su producto es la cuestión α = ΠA, definido como sigue: para plantear 

α, se selecciona, de la manera que se quiera, una cuestión β ∈ A y, planteando esta 

cuestión, se atribuye a α la respuesta obtenida. El primer axioma de PIRON requiere 
que Q sea cerrado con respecto a  la formación de cuestiones sobre productos arbi-

trarios. Un momento de reflexión revela que [ΠA] = ∩
β ∈ A

 [β]. Por lo tanto, L es 

cerrado bajo intersecciones arbitrarias y, por tanto, un retículo completo.10 

Ortocomplementación. Si α es cualquier cuestión, podemos definir una cuestión 
inversa α~ intercambiando los papeles de sí y no. PIRON requiere que Q sea cerrado 

bajo la formación de inversas. La interpretación prevista nos obliga a suponer que  
                                           
9 Nótese que esto no es estrictamente necesario, sino que es sólo un expediente para evitar 
locuciones tales como “si el sistema está o, ha sido preparado, de tal manera que...” Del mismo 
modo, la identificación usual de proposiciones con clases de equivalencia de cuestiones, está 
hecha para facilitar la exposición y no debe tomarse formalmente, como una definición. 
10 La operación producto fue introducida primero en [JAUCH and PIRON, 1969].  La concurrencia 
había sido introducida antes, mediante conjunción semántica [Piron 1964] o filtros límites [Jauch, 
1968]. 
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[α] ∩ [α~] = ∅. Para asegurar una ortocomplementación sobre L, PIRON introduce 

otro axioma, a saber, que para cada cuestión α, existe un complemento compatible 

β ∈ [α] que satisface [β~] ∨ [α] = 1.11 

Ortomodularidad.  Aparentemente, esto no descarta la posibilidad de que existan 
varios complementos compatibles para un α dado, no equivalentes. Sin embargo, 
esto se resuelva por un tercer axioma PIRON 

 Axioma P: Si b < c y b′y c′ son complementos compatibles para b y c, respec-

tivamente, entonces el subretículo de L, generado por b, c, b′, c′, es distributivo. 

Se deduce que los complementos compatibles son únicos, definiendo, por tanto una 
ortocomplementación. Además, el axioma P determina que L es ortomodular: si b < 

c, entonces (c ∧ b′) ∨ b = c, por la distributividad de {b, c, b, c´}. 

Atomicidad y ley de cubrimiento. PIRON impone la atomicidad del retículo con un 
axioma ad hoc (A1) requiriendo que L sea atómico —es decir, cada elemento do-

mina al menos a un átomo. También impuso directamente la ley de cubrimiento 
(como axioma A2), pero con una motivación substancial, como sigue. Sea Σ

L
 el 

conjunto de los átomos de L.  Ahora, en cada conjuntopo ortocomplementado L, la 
aplicación SASAKI ϕ: L × L → L, viene dada por ϕ(a, b) = b ∧ (b′ ∨ a).  Si b es fijo, 
escribimos ϕ

b
: L → L para asignación ϕ

b
 (a) = ϕ(a, b) = b ∧ (b′ ∨ a). Nótese que L 

es ortomodular syss ϕb(a)  = a para todo a ≤ b, en cuyo caso ϕ
b
(a) ∨ b′ = a ∨ b′. Con 

estas observaciones, no es difícil demostrar que un ROM L satisface la ley de cu-

brimiento atómico syss para todo a ∈ L, tenemos a ∈  Σ
L
 & b ⊥∕ a  ⇒ ϕ

b
(a) ∈ Σ

L
.  

Entonces tenemos una formulación alternativa de la ley de cubrimiento, a saber, 
que las proyecciones SASAKI asignan átomos a átomos o a 0. 

 PIRON define al estado del sistema como el conjunto de todas las proposicio-
nes p = [α] que son válidas (en un momento dado, en una situación dada).  Natu-
ralmente se requiere que el estado sea cerrado con respecto a la intersección y la 
ampliación, es decir, que sea un filtro completo en el retículo L.  Un tal filtro es 

                                           
11 El hecho de que un axioma deba ser postulado para garantizar la existencia de una ortocomple-
mentación, se debe al hecho de que los inversos de cuestiones equivalentes no tienen que ser e-

quivalentes. Por ejemplo, 0 · I = 0 sin embargo (0 · I )∼ = 0∼ ·  I∼ = I ·  0 = 0 y 0∼ = I. Para una 
discusión de algunas confusiones sobre este punto, ver [FOULIS and RANDALL, 1984]. 
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principal y generado por un átomo. Por lo tanto, los estados pueden ser representa-

dos por átomos.12 13 Finalmente, diremos que a, b ∈ L, son compatibles syss {a, b, 

a′, b′} es distributiva syss ϕb(a) = a ∧ b. PIRON llama a las cuestiones 

(a) ideales syss cada proposición compatible con [α], que es válida antes de una 
medición de α, también es válida después, cuando el resultado de esa medición es 
sí. 
(b) de primera clase syss la respuesta a α inmediatamente después de asegurar la 
respuesta sí es válida, sea otra vez, sí. 
Considerando al axioma A2 (es decir, la ley de cubrimiento), se puede entonces 

probar que, para β una medición ideal de primera clase de b ∈ L, si a es el estado 

antes de la medición, entonces el estado, después de asegurar sí sobre la medición 
de α, es φb(a). 

 Muchas personas han encontrado convincente al razonamiento físico que 
motiva los axiomas PIRON.  Sin embargo, este marco resulta tener algunas limita-
ciones agudas.  En particular, un sistema formado por dos sistemas "separados", en 
el sentido de AERTS [1981, 1982], cada una de los cuales, individualmente, obedece 
a los axiomas PIRON, conformaría como un todo, a estos axiomas si y sólo si uno de 
los sistemas es clásico.  Para probar este resultado clave, AERTS aprovecha la no-
ción de relación de ortogonalidad, según la cual dos estados son ortogonales si 
existe una cuestión que es válida para el primero e imposible para el segundo. El 
uso de esta relación se ha vuelto central en axiomatizaciones más recientes del en-
foque Escuela de Ginebra, como [PIRON, 1990; MOORE, 1999]. Para un análisis de-
tallado, ver [VALCKENBORGH, 2000]. Nótese que en estas obras, la  atención se cen-
tra en ortoretículos atomísticos completos como modelos para las axiomatizaciones 
más directas basadas en la dualidad entre el estado y las descripciones de propieda-
des de un sistema físico. Un poco paradójicamente, entonces, el enfoque PIRON 
mantiene un axioma rechazado en el enfoque COM — es decir, compleción — y 
rechaza otro que mantiene el último — a saber (alguna forma de) ortomodularidad. 
Como veremos en la siguiente sección, este escote es sintomático del hecho de que 

                                           
12 Recíprocamente, si p ≠ 0, entonces p = [α], donde α es una cuestión que es válida para, al 
menos, una preparación.  Así, existe al menos un estado (es decir, cualquier estado compatible 
con esa preparación) que contiene a p. Por lo tanto, deben haber suficientes estados de modo que, 
para cada p en L, hay un estado/átomo a ≤ p.  Pero esto implica inmediatamente, que cada átomo 

es un estado. Por lo tanto, los estados corresponden exactamente a átomos de L. 



Lógica Quántica Operatoral 

19 

uno debe distinguir conceptualmente al retículo de propiedades de un sistema de su 
lógica, aun cuando resulten ser isomorfos. 

5. EL TRABAJO DE FOULIS Y RANDALL 
 Contemporáneo con estos acontecimientos, se desarrolló el trabajo de DAVE 

FOULIS y el de CHARLIE RANDALL sobre Lógica Empírica, una síntesis feliz de i-
deas procedentes de sus respectivas tesis doctorales, en Teoría abstracta de Retícu-
los [FOULIS, 1958] y Estadística Operacional Concreta [RANDALL, 1966].  Este for-
malismo, no sólo proporciona una potente heurística general, sino, como veremos, 
también ha puesto el fundamento para varios de los desarrollos puramente matemá-
ticos que se discutirán a continuación. 

5.1. Espacios de Ensayos 
 Tanto MACKEY como PIRON comienzan con una estructura primitiva en la 
que están sin relacionar, para distintos observables, proposiciones experimentales 
de la forma "el observable A toma valores en el conjunto B".  En efecto, cada ob-
servable A se asocia a un álgebra BOOLE BA de acontecimientos posibles (isomorfo 

al campo BOREL en el esquema MACKEY y a {0, 1} en el PIRON), siendo estos álge-
bras BOOLE, inicialmente, disjuntos uno del otro. Luego se hacen identificaciones 
entre álgebras BOOLE correspondientes a diferentes observables. En el esquema 
MACKEY, proposiciones primitivas (A1, B1) y (A2, B2) son identificadas syss son 

equiprobables en cada estado; en el PIRON, syss son válidas en exactamente, las 
mismas situaciones. Ambas aproximaciones a la construcción de la lógica cuántica 
han sido objeto de algunas críticas. En particular, tal como señala un número de au-
tores, ambas se hacen problemáticas cuando uno considera mediciones compuestas 
o iteradas.13 

 En una serie de documentos (p. ej. [FOULIS and RANDALL, 1972, 1974, 1978, 
1981a; RANDALL and FOULIS, 1970, 1973, 1978, 1983a]), FOULIS y RANDALL desa-
rrollaron una extensa teoría ––que denominan lógica empírica— en la cual estas i-
dentificaciones son dadas a priori, sin referencia previa a cualquier concepto de es-
tado o propiedad. Su formalismo se basa en la noción primitiva de operación o en-

sayo —es decir, un conjunto definido de posibles resultados alternativos, mutua-
mente exclusivos. La teoría FOULIS-RANDALL se enfoca en espacios de ensayos, es 

                                           
13 Un ejemplo simple se ofrece en [COOKE and HILGEVOORD, 1981]. El punto es familiar — 
incluso en mecánica cuántica con espacios HILBERT ortodoxos, se debe hacer un seguimiento de 
las relaciones de fase al discutir experimentos iterados y estos se pierden cuando uno identifica 
proposiciones experimentales según los esquemas de MACKEY ó de PIRON. 
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decir, colecciones A de ensayos superpuestos. Se entiende que se dará la identifica-

ción de los resultados entre distintas pruebas, es decir, FOULIS y RANDALL no esta-
blecen ninguna doctrina con respecto a cómo deben hacerse esas identificaciones. 
Denotando por X = ∪A al espacio de resultados de A, un estado estadístico se de-

fine como una asignación ω: X → [0, 1], tal que Σx ∈ Eω(x) = 1 para cada ensayo E 

∈ A y un estado realístico es representado [FOULIS, PIRON and RANDALL, 1983] por 

una cierta clase de subconjunto de X, llamado un soporte, que representa a la totali-
dad de los resultados posibles en ese estado. Nótese que, aparte de sus propios mé-
ritos, este concepto puede ser utilizado para dar un tratamiento matemático perspi-
cuo de axiomática PIRON; véase [RANDALL and FOULIS, 1983b] y [WILCE, 1997]. 

 Se puede acoplar un número de objetos algebraicos, analíticos y de orden a 
un espacio de ensayos A, cada uno sirviendo de manera ligeramente diferente, co-

mo una especie de "lógica". Bajo condiciones normativas simples sobre la estructu-
ra combinatoria de A, éstos resultan coincidir con estructuras más familiares. En 

particular, si A es “algebraico”,14 se puede construir a partir de los eventos de A, 

una bastante bien comportada, estructura algebraica parcialmente ordenada Π(A), 

llamada un ortoálgebra. Éstos se pueden definir abstractamente: un ortoálgebra es 
un par (L, ⊕) donde L es un conjunto y ⊕ es una operación binaria parcial asociati-
va, conmutativa, en L, que cumple las tres condiciones siguientes: 

(a) Existe un elemento neutro 0 ∈ L tal que, para cada p ∈ L, p ⊕ 0 = p.  

(b) Existe un elemento unidad 1 ∈ L tal que, para cada p ∈ L, hay un único q ∈ 

L, con p ⊕ q = 1; 
(c) Si p ⊕ p existe, entonces p = 0. 

 Así, los ortoálgebras generalizan a los COM’s, que se pueden definir como 
ortoálgebras en los cuales, dado que p ⊕ q, q ⊕ r y r ⊕ p existen, el elemento p ⊕ q 
⊕ r también existe. Este axioma, llamado de ortocoherencia, es en realidad una 
versión finitística del axioma MACKEY, V. Recíprocamente, desdeñando la condi-
ción (c), obtenemos lo que se llama un álgebra de efectos, llamado ortoálgebra ge-

                                           
14 Un espacio de ensayos es algebraico si dos elementos cualesquiera con un complemento co-
mún, comparten exactamente, los mismos complementos, donde A y B son complementos si son 
disjuntos y A ∪ B es un ensayo. 
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neralizado por [GIUNTINI and Greuling, 1989] y D-conjuntopo por [KÔPKA, 1992] 

5.2. Ortoálgebras 
 Los ortoálgebras y álgebras de efectos son objetos suficientemente regulares 
como para tener una interesante teoría matemática (una que sólo está empezando a 
ser explorada). En particular, casi todo el aparato conceptual de la LQ basada en 
COM’s, tales como centros [RÜTTIMANN, FOULIS and PULMANNOVÁ, 1995] y pro-
yecciones SASAKI [BENNETT and FOULIS, 1998; WILCE, 2000], pueden extenderse 
bastante fácilmente a este contexto más general. Por otro lado, debido a su simpli-
cidad, los espacios de ensayos son, a menudo, mucho más fácil de manipular que 
sus asociados "lógicas". También tienen la ventaja heurística de que la interpreta-
ción operatoral está, por así decirlo, concorde en la superficie, con lógicas que sir-
ven sólo como invariantes útiles. En particular, mientras que es completamente 
sencillo combinar espacios de ensayos secuencialmente, los diversos "lógicas" ra-
ramente permiten tales combinaciones. Por último, si A es algebraico, existe una 

asignación canónica que preserva orden L → L, del lógica de A en el retículo de 

propiedades asociado a cualquier entidad (A, Σ) sobre A. Tanto en los ejemplos 

mecánico-clásicos como en los mecánico-quánticos, esta asignación es en realidad 
un isomorfismo, así que L hereda de L la estructura de retículo completo y L here-

da de L una ortocomplementación y una ortomodularidad. Este isomorfismo es, sin 
embargo, la excepción más bien que la regla. Como han señalado [FOULIS, PIRON 
and RANDALL, 1983], la tendencia a identificar L y L ––aun cuando sean isomor-

fos–– ha provocado una gran confusión innecesaria en las discusiones de los fun-
damentos y la interpretación de la mecánica cuántica. 

 Además de su incomodidad en el trato con las mediciones secuenciales, otra 
dificultad que se presenta con el esquema MACKEY de LQ, de nuevo reconocida 
primero, por FOULIS y RANDALL [1979], es que no es estable en la formación de 
cualquier tipo de producto tensorial razonable. Dados LQ’s (L, ∆) y (L′, ∆′), en el 
entendido de cada uno que representa a un sistema "físico", se quiere construir un 
modelo (M, Γ) del sistema acoplado, en el que L y L′ puedan mostrar correlaciones, 
pero no interactúan directamente. Los requisitos mínimos serían que 
(a) existe una asignación L × L′→ M, que lleva p, q a alguna proposición repre-

sentativa p ⊗ q ∈ M, y 

(b) para cada par de estados µ ∈ ∆, ν ∈ ∆′, podemos formar un estado µ ⊗ ν ∈ Γ 

tal que (µ ⊗ ν)(p ⊗ q) = µ(p)ν(q). 
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Sin embargo, FOULIS y RANDALL producen un simple ejemplo que muestra que es-
to, en general, es imposible: un pequeño y finito ROM L, con un completo conjunto 
de estados tales que no existe un tal "producto tensorial" para dos copias de L. 

 El culpable resulta ser el axioma MACKEY, V —o, más precisamente, la orto-
coherencia.   

 De hecho, se puede demostrar, bajo la suposición muy tenue, de que los or-
toálgebras involucrados, cada uno lleva una familia unital de estados, que se pue-
den formar productos tensoriales de los ortoálgebras, de manera que se satisfagan 
los desiderata (a) y (b) [FOULIS and RANDALL, 1981b; RANDALL and FOULIS, 1981]. 
Sin embargo, como ilustra el ejemplo recién considerado, la ortocoherencia no es 
estable con respecto a estos productos tensoriales. Combinando estos resultados 
con los resultados negativos mencionados, de AERTS, para retículos de propiedades, 
lo que aparece es que el isomorfismo entre lógica y retículo de propiedades, carac-
terístico de sistemas clásicos y cuánticos, se descompone cuando uno forma pro-
ductos tensoriales, a menos que los sistemas en cuestión, sean clásicos. Esto no 
quiere decir que los resultados sean totalmente negativos. Investigaciones posterio-
res en la estructura de los productos tensoriales [KLÄY, RANDALL and FOULIS, 
1987; GOLFIN, 1987; WILCE, 1990, 1992; BENNETT and FOULIS, 1993; DVU-

REČENSKIJ y PULMANNOVÁ, 1994; DVUREČENSKIJ, 1995] revelaron que los pro-
ductos tensoriales FOULIS-RANDALL de entidades mecánico-quánticas, aunque no 
estrictamente quánticos, aún conservan una rica estructura geométrica. 

 Estos resultados dieron un impulso sustancial al estudio de ortoálgebras, es-
pacios de ensayos y otras estructuras más generales que aquellas consideradas por 
MACKEY y PIRON (algunas de los cuales serán discutidas más abajo). La teoría de 
los espacios de ensayos, en particular, se ha desarrollado en varias direcciones en 
las últimas décadas. Un número de autores (por ejemplo, [DVUREČENSKIJ and PUL-

MANNOVÁ, 1994b; PULMANNOVÁ and WILCE, 1995; GUDDER, 1997]) han discutido 
los espacios de ensayos generalizados, en los que se permite a los resultados ocurrir 
con alguna multiplicidad o intensidad y éstos se han utilizado para proporcionar u-
na semántica operatoral para álgebras de efectos, que es paralela a la semántica de 
espacios de ensayos para ortoálgebras. En [HABIL, 1993] se ha discutido Teoría de 
la Medida sobre ortoálgebras. NISHIMURA [1993, 1995] ha generalizado la idea de 
espacio de ensayos, mediante la sustitución de conjuntos discretos de resultados por 
algebras BOOLE completas y locales. [WILCE, 2000] da un estudio actualizado de la 
teoría FOULIS-RANDALL; para una visión personal del desarrollo histórico de este fi-
lamento de lógica quántica operatoral ver [FOULIS, 1998, 1999]. 
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6. Estructuras Ortomodulares. 
 Hasta el momento, nos hemos centrado en LQ como un programa interpreta-
tivo o fundamental en Física. Pero el tema tiene otras raíces absolutamente inde-
pendientes en matemática pura. VON NEUMANN mismo, ha recalcado la importancia 
de métodos de teoría del orden, en el estudio de análogos infinito-dimensionales, de 
Geometría Proyectiva. LOOMIS [1955] y MAEDA [1955] independientemente, reco-
nocieron que una porción de teoría de la dimensión de álgebras VON NEUMANN, po-
dría ser extendida a un entorno puramente teórico-reticular, es decir, a un ROM 
provisto de una adecuada relación de equivalencia. Esto estimuló a algunos mate-
máticos a comenzar a investigar ROM’s en abstracto. Pronto se hizo evidente que 
tales retículos ocurren con naturalidad en una amplia gama de contextos matemáti-
cos. Si (S, ∗) es cualquier semigrupo involutivo, llamemos una proyección a un 

elemento p ∈ S que satisface p = p2 = p∗. Si S contiene un elemento cero (bilateral), 

el dextro-anulador de x ∈ S es el dextro-ideal {a ∈ S | ax = 0}. FOULIS [1958, 1960, 

1962] define a un *-semigrupo BAER como un semigrupo involutivo S, con cero, 

que tiene la propiedad de que el dextro-anulador de cualquier elemento x ∈ S es el 

dextro-ideal generado por una (necesariamente, única) proyección x′. Mostró que el 
conjunto L(S) de proyecciones cerradas p = p′′, en S, siempre forman un ROM. Re-
cíprocamente, cada ROM se puede representar como L(S) para algún *-semigrupo 
BAER. En efecto, aunque esta representación no es única, hay una opción canónica 
de S; a saber, el semigrupo S(L) de las auto-aplicaciones residuadas de L, es decir, 

las asignaciones ϕ: L → L, para las cuales existe una asignación ψ: L → L, que sa-

tisface ψ(x) ≤ y′ ⇔ x ≤ ϕ(y)′. Entre estas asignaciones están las proyecciones SA-

SAKI ϕb, discutidas en Sección 4, que resultan ser exactamente, las proyecciones ce-

rradas en S(L). 

 En las décadas siguientes, una substancial teoría pura de ROM’s fue desarro-
llada por FOULIS y otros. El estado de esta teoría a partir de la década de 1980, está 
representado por el libro de KLAMATH [1983]. [BRUNS and HARDING, 2000] discu-
ten acontecimientos más recientes, de los cuales ha habido muchos. 

 Particularmente llamativo es el reciente descubrimiento por HARDING [1996, 
1998], de que se puede organizar al conjunto de descomposiciones en productos di-
rectos de esencialmente, cualquier objeto algebraico en un COM. 

 Por otro lado, el trabajo continuado en el programa MACKEY también produ-
jo una variedad de estructuras más generales que ROM’s y conjuntopos ––ortoálge-
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bras, los aún más generales álgebras de efectos y, en una dirección diferente, los ál-
gebras BOOLE parciales de KOCHEN y SPECKER [1967]. Todos estos son objetos 
principalmente, algebraicos parciales y, sólo secundariamente, ordino-teóricos. Han 
atraído, especialmente durante los últimos años, significativo interés matemático.15  

 La teoría de álgebras de efectos, gran parte de la cual es debida a la labor 
pionera de FOULIS y M. K. BENNETT [BENNETT and FOULIS, 1995, 1997; FOULIS 
and BENNETT, 1994], se continúa desarrollando rápidamente. De particular interés 
es aquí, su reciente reformulación de una gran parte de la teoría de álgebras de 
efectos (y por lo tanto, de la LQ) como una rama de la teoría de grupos abelianos 
ordenados, que también se discute en [FOULIS, BENNETT and RÜTTIMANN, 1996; 
FOULIS, RÜTTIMANN and BENNETT, 1998; WILCE 1995, 1998]. Este es el tema de 
[FOULIS, 2000]. 

 Finalmente, también se han estudiado ROM’s detalladamente, en el contexto 
puramente lógico y, en particular, la posibilidad de definir conectivos de implica-
ción razonables. Uno de los resultados básicos en este sentido, es el de KALMBACH 
[1974] que, aprovechando la caracterización de ROM’s libres sobre dos generado-
res [BRUNS and KALMBACH, 1973], fue capaz de demostrar que hay exactamente 
cinco polinomios reticulares a → b, satisfaciendo la condición implicativa primiti-

va a ≤ b ⇔ (a → b) = 1. Nótese que aquí, la ortomodularidad es esencial, un simple 

examen del no-ortomodular "anillo bencénico" que muestra que tales conectivos no 
existen en el caso no-ortomodular [MOORE, 1993]. Para un análisis de la más débil 

condición de exportación a ≤ b ⇒ (a → b) = 1, conjuntamente con el modus po-

nens, véase [HERMAN, MARSDEN and PIZIAK, 1975] y, para una investigación deta-
llada del teorema de deducción, ver MALINOWSKI [1990, 1992]. Por otro lado, la 
definición de una relación Kripkeana de accesibilidad inducida a partir de la no-
ortogonalidad, una idea que tiene sus orígenes en labor de FOULIS y RANDALL sobre 
ortogonalidad lexicográfica [1971], ha permitido la introducción de la LQ modal 
[DALLA CHIARA, 1977, 1983; GOLDBLATT, 1974, 1975].  Por supuesto, ha habido 
mucho otros trabajos sobre las implicaciones en LQ; Para descripciones generales, 
véase, por ejemplo, [DALLA CHIARA, 1986; VAN FRAASSEN, 1981; HARDEGREE and 
FRAZER, 1981]. 

                                           
15 Un resultado notable es el de KOCHEN y CONWAY [KOCHEN, 1996], de que muy pequeños 

conjuntos de proyecciones en P(H) generan una álgebra Boole parcial que es densa en el retículo 

de proyecciones. 
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7. ASPECTOS DINÁMICOS, CATEGORIALES Y COMPUTACIONA-
LES.  
 Cerramos considerando la reformulación categorial de las nociones básicas 
de estructuras de orden y su aplicación a la Teoría Quántica Operatoral, un tema 
con fuertes vínculos con varios desarrollos recientes en Teoría de Categorías Enri-
quecida y Semántica Computacional. El instrumento básico de esta teoría, son los 
pares f ⊣ ɡ, donde f: L → M y ɡ: M → L, son aplicaciones isótonas entre conjunto-

pos, satisfaciendo la condición de adjunción f(a) ≤ b ⇔ a ≤ ɡ(b).  

 Para un desarrollo aterrizado, de la teoría de adjunciones con un enfoque par-
ticular en sus aplicaciones operatorales, nos referimos a [COECKE and MOORE 
2000]. Es divertido hacer notar que este concepto puede utilizarse para arrojar al-
guna luz sobre la observación de BIRKHOFF y VON NEUMANN citada anteriormente, 
de que mientras que los filósofos han tendido a centrarse en la naturaleza de la ne-
gación en lógicas no clásicas, el estudio de MQ destaca la ley distributiva como el 
eslabón más débil en LQO. Para ver esto, observemos que los álgebras HEYTING, 
considerados como modelos para la lógica intuicionista, pueden definirse como 
aquellos retículos que admiten un conexión de implicación → que satisface la con-

dición de adjunción (x ∧ a) ≤ b ⇔ x ≤ (a → b) [BIRKHOFF, 1940 §161; BIRKHOFF, 

1942 §27].  

 Puesto que la condición f ⊣ ɡ implica que f preserva las juntas existentes y ɡ 

preserva las concurrencias existentes, cualquier álgebra HEYTING es distributivo. 

 Por otro lado, gran parte de la teoría de estructuras de ROM’s se basa en la 
llamada adjunción SASAKI ϕa ⊣ ϕa, donde  

ϕa(x) = a ∧ (a′ ∨ x)   y   ϕa(x) = a′ ∨ (a ∧ x) 
[NAKAMURA, 1957; SASAKI, 1955]. 

 En cierto sentido, podemos considerar a los álgebras HEYTING como una cla-
se de retículos distributivos donde aquellos elementos que poseen un complemento 
pueden caracterizarse simplemente y a los ROM’s, como una clase de ortoretículos 
donde el conjunto de complementos de cualquier elemento, puede ser computado 
simplemente.  

 Para discusiones de álgebras HEYTING y retículos semicomplementados más 
generales, ver [CURRY, 1963; FRINK, 1962; KÖHLER, 1981; NEMITZ, 1965]. 
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 Una de las primeras y más importantes aplicaciones, de las residuaciones en 
ROM’s fue el trabajo pionero de FOULIS sobre ∗-semigrupos BAER, descrito ante-
riormente. Esta investigación no sólo ha conducido a una comprensión más profun-
da de la noción de residuación [BLYTH y JANOWITZ, 1972; DERDÉRIAN, 1967], sino 
que también fue crucial en el desarrollo de los aspectos dinámicos de LQO. Uno de 
los primeros de estos acontecimientos, fue el trabajo de POOL [1968a, b], que bus-
caba una interpretación fenomenológica de los *-semigrupos BAER vía la noción de 
probabilidad condicional suministrada por la teoría quántica de mediciones, con-
vencional.  

 Un enfoque más claramente operatoral, a evoluciones en general, estuvo a 
cargo de DANIEL [1982, 1989] y fue extendido por FAURE, MOORE y PIRON [1995], 
conduciendo el último a un estudio general de las categorías de espacios de estados 
y retículos de propiedades [MOORE, 1995, 1997]. Aquí una evolución externamente 
impuesta es modelada retrotrayendo proyectos experimentales definitivos, defini-
dos en el momento final, hasta sus imágenes definidas en el momento inicial. Me-
diante argumentos físicos, esta aplicación debe preservar el funcionamiento del 
producto y así, la concurrencia en el retículo. Por lo tanto, en condiciones de esta-
bilidad apropiadas, su levo-adjunto, que preserva las juntas, describe la propaga-
ción del estado del sistema. Estas observaciones han sido generalizadas por AMIRA, 
COECKE y STUBBE [1998], que explican la estructura de los ensayos operatorales 
derivados de las nociones de libertad de elección y composición. Nótese que la úl-
tima de estas nociones en particular, juega un papel fundamental en la heurística de 
FOULIS y RANDALL antes mencionados.  

 Finalmente, la estructura abstracta de resoluciones operatorales ha sido ana-
lizada por COECKE y STUBBE [1999a, b, 2000], permitiendo, por ejemplo, un análi-
sis de los conceptos físicos de componibilidad [COECKE, 2000] y la dualidad entre 
causalidad y propagación [COECKE, MOORE and STUBBE, 2000].  

 Matemáticamente, la estructura inducida a partir de las resoluciones operato-
rales, es la de un quantaloide, es decir una categoría cuyos conjuntos de morfismos 
son retículos completos con respecto a las juntas, de modo que la composición se 
distribuye a ambos lados sobre las juntas.16 Se obtiene así, un ejemplo simple de 
categoría enriquecida, en la cual los conjuntos de morfismos son objetos de alguna 

                                           
16 El nombre quantaloide fue introducido por ROSENTHAL [1991], aunque gran parte del 
desarrollo conceptual básico ya había sido hecho por JOYAL y TIERNEY [1984] y PITTS [1988] en 
sus estudios de los topoi de GROTHENDIECK. 
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categoría base y la composición se hace mediante transformaciones naturales que 
satisfacen criterios de coherencia. Esto se ha convertido en un concepto central en 
la Teoría de Categorías y es tratado en el texto estándar [BORCEUX, 1994]; para un 
tratamiento especializado, ver [KELLY, 1982] y para un desarrollo didáctico, ver 
[BORCEUX and STUBBE, 2000].  

 Al limitar la atención a las categorías con un solo objeto, recuperamos a los 
quantales, introducidos por MULVEY [1986], como generalización no conmutativa 
de locales.17 Aquí puede mencionarse la reciente extensión de las nociones locálicas 
de simplicidad y espacialidad en el contexto de quantales [KRUML, 2000; PASEKA, 
1997; PASEKA and KRUML, 2000; ROSICKÝ, 1995], un tema tratado en detalle en 
[ROSICKÝ and PASEKA, 2000]. Es interesante señalar que estructuras similares tam-
bién han sido aprovechadas en Informática. Un ejemplo importante es la llamada 
lógica observacional de ABRAMSKY y VICKERS [ABRAMSKY, 1991; ABRAMSKY y 
VICKERS, 1993; VICKERS, 1989]. Aquí se observa que la posibilidad de que la ob-
servación induzca un cambio de estado, formalmente conduce a un tránsito de mar-
cos a quantales.  Esta línea de pensamiento ha sido extendida por RESENDE [1999, 
2000], que describe los sistemas generales en base a su comportamiento observable 
independientemente de cualquier supuesto espacio de estado.  Para una revisión ge-
neral, ver [RESENDE, 2000]. Debe señalarse, sin embargo, que estas consideraciones 
son bastante diferentes de la noción contemporánea de computación quántica 
(véase por ejemplo la teoría general de lenguajes quánticos [Gudder, 2000], es de-
cir, lenguajes aceptados por autómatas quánticos). 
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