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...la relacion entre las propiedades de un sistema fisico, por una parte y las proyecciones, por otra, hace
posible una especie de cdlculo logico con éstas.
VON NEUMANN, 1932

Resumen. El objetivo de este trabajo es dar una presentacion uniforme de lo que
llamamos Légica Qudntica Operatoral,” destacando, tanto su origen fisico concreto,
como su estructura puramente matematica. Para establecer un contexto a este tema,
resefiamos algo de la evolucion histérica de la Légica Quantica, intentando mostrar
como se han influenciado y enriquecido mutuamente, los aspectos fisicos y mate-
maticos de la materia.
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Practica, Teoria de Categorias.

Abstract. The goal of this work is to provide a uniform presentation of what we
call Operatoral Quantum Logic, emphasizing both its specific physical origin as its
purely mathematical structure. To establish a context to this topic, we review some-
thing of the historical evolution of the Quantum Logic, trying to show how the
physical and mathematical aspects of the subject have influenced and enriched each
other.
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El tema de la Légica Qudntica Operatoral (LQO) —situada en algin lugar
de confluencia de matemadticas, fisica y filosofia— tiene una historia larga y com-
plicada y ha generado una literatura grande, dispersa y turbulenta. No es algo facil
de explicar en pocas palabras jcomo se supone que debe de ser!

En nuestro mejor intento decimos que LQO comprende:
(a) al hecho de que la estructura de los observables 2-valuados, en Mecéanica
Quantica Ortodoxa, puede ser utilmente, considerada como una Légica Proposicio-
nal No-Clasica;

(b) al intento de dar motivacion independiente, de esta estructura, como parte de
un programa general para interpretar Mecanica Quantica (MQ) y

(c) alarama de la matemaética pura que ha surgido de (a) y (b) y ahora se refiere
a una variedad de estructuras “ortomodulares”, generalizacion de la 16gica de ob-
servables quanticos 2-valuados.

Sea lo que sea, Logica Quantica (LQ) es una parte viva y creciente de Mate-
maticas Contempordneas y Fisica Tedrica —una que ha seguido manteniendo el in-
terés de un cuerpo de matemadticos, fisicos y fildsofos de la ciencia. Este interés
sostenido, refleja en parte, al hecho de que las ideas bésicas y el lenguaje de LQ
producen informacion para la mayoria de las discusiones acerca de los engorrosos
problemas sobre los fundamentos de MQ (de hecho, a un grado que, a menudo, no
es reconocido, incluso, por los disertantes). Refleja, también, al hecho de que LQ
ha generado una auténoma y fascinante rama de Matemaética Pura, involucrada con
una variedad de estructuras —reticulos ortomodulares (ROM’s) y conjuntopos (con-
juntos parcialmente ordenados), ortodlgebras, dlgebras BOOLE parciales, etc.— que

generalizan al reticulo P(H) de las proyecciones en un espacio HILBERT H. Por ul-

timo, la llegada de Computacion Quantica (CQ) y Teoria de Informacion Quéntica
(TIQ) ofrece un campo de aplicaciones practicas de LQ, que todavia tiene que ser
explorado.

Histéricamente, LQ deriva de la observacion (mdas que casual) por VON NEU-
MANN, de que los observables 2-valuados, representados en su formulacién mecé-
nico-quantica, por operadores proyecciones, constituyen una especie de “légica” de
proposiciones experimentales. Esta idea fue proseguida por BIRKHOFF y VON NEU-
MANN.

Después de dos décadas de abandono, el interés por LQ fue revivido, debido
en gran parte al andlisis por MACKEY, del Célculo Probabilistico de la Teoria Quan-
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tica Estandar, acoplado con su Teoria de Representaciones Inducidas.

El desarrollo posterior del tema ha ocurrido en varios niveles y en variadas
direcciones. El trabajo de MACKEY fue ampliado significativamente por PIRON, cu-
yos Teorema de Representacion y marco axiomdtico proporcionaron mucho impul-
so para el desarrollo posterior. Al mismo tiempo, la insatisfaccion con el marco
axiomatico debido a MACKEY, condujo a una busqueda de fundamentos mas primi-
tivos y mds concretamente operatorales. Aqui destaca la labor de FOULIS y RAN-
DALL y también la de LUDWIG y sus colegas en Marburgo.

El trabajo en Fisica Fundamental también ha estimulado y ha estado estimu-
lado por, la investigacion puramente matematica; en particular, en el desarrollo de
una teoria abstracta de ROM’s y, en los ultimos afios, estructuras mas generales
como ortodlgebras y dlgebras de efectos. Mds recientemente aun, el tema ha visto la
aplicacion de poderosas técnicas de Teoria de Categorias.

Dada la variedad algo abrumadora de estos progresos, en este ensayo intro-
ductorio, vamos a intentar un esbozo de LQ, que podria ayudar a los lectores que
no son expertos en la materia, a entender los diversos documentos que se producen
y también, a verlos como pertenecientes a un tema comun.

Empezamos comentando el trabajo seminal de BIRKHOFF y VON NEUMANN y
su desarrollo por MACKEY. Luego, pasamos a una breve exposicion del Teorema de
Representacion, de PIRON y su marco axiomatico, refiriendo al lector a [COECKE
and MOORE, 2000] y [VALCKENBORGH, 2000] para exposiciones en un lenguaje ca-
tegorial (de Teoria de Categorias) mas actualizado. A continuacion, se discute el
trabajo de FOULIS y RANDALL; en particular, su introduccién de la nocidn de ortodl-
gebra y su observacion de que los productos tensoriales de conjuntopos ortomodu-
lares (COM’s), generalmente existen s6lo como ortodlgebras. El formalismo
FOULIS-RANDALL se discute detalladamente en [WILCE, 2000].

Seguimos con una exposicion general de la teoria matematicamente pura, de
estructuras ortomodulares. Para mas detalles sobre ROM'’s, ver a [BRUNS and HAR-
DING, 2000], para observables en COM’s, a [PTAK, 2000] y para representaciones de
grupos sobre algebras de efectos, a [FOULIS, 2000].

Por ultimo, consideramos a la nocion de enriquecimiento categorial y la teo-
ria de quantales, revisados, respectivamente, en [BORCEUX and STUBBE, 2000] y
[PASEKA and ROSICKY, 2000], antes de introducir los aspectos informadticos y lin-
giiisticos, tratados, respectivamente, en [RESENDE, 2000] y [GUDDER, 2000].
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2. MECANICA QUANTICA VON NEUMANN

Aunque existian tratamientos matematicos precisos de MQ, antes del tratado
monumental de JOHANN VON NEUMANN [1932]; razonablemente, se podria argu-
mentar que este trabajo fijo, de una vez por todas, el marco tedrico de Teoria Quén-
tica Estdndar, en el que cada sistema mecanico-qudntico estd asociado a un espacio

HILBERT H, cada vector unitario ¢ € H, determina un estado del sistema y cada

cantidad fisica observable, asociada con el sistema estd representada por un opera-
dor autoadjunto A sobre H. El teorema espectral nos dice que un tal operador esta
asociado con una medida espectral

P,: B(R) — P(H),

que asigna a cada conjunto BOREL real B, un operador proyeccion P, (B) sobre H.

Para cualquier vector unitario ¢ € H, la cantidad

My, 1/}(3) = <PA(B) U, ¢>

define una medida de probabilidad sobre la recta, que VON NEUMANN considera que
da la probabilidad de que el observable (representado por) A tiene un valor en el

conjunto B, cuando el estado del sistema es (representado por) .
Si la funcion identidad tiene varianza finita en u, . 1 estd en el dominio de

Ay el valor esperado de A con respecto a ¢/, estd dado por

Expd, o) = sdu, (5)
Se comprueba facilmente, que esto funciona para Exp(A, ¥) = (A 1, ).

2.1. Légica de Proyecciones

Si Mathematische Grundlagen der Quantenmechanik (Fundamentos Mate-
mdticos de Mecdnica Qudntica) habia sefialado el paso a la madurez de la MQ, se-
nald también el nacimiento de la LQ. Evidentemente, es la medida con valores pro-
yecciones P,, mas que el operador A, lo que lleva més directamente a la interpreta-

cién estadistica de la MQ, descrita anteriormente. Ahora, como anota VON NEU-

MANN, cada proyeccion P € P(H), define un observable —uno con los valores 0 y

1. Si P = P,(B) es la proyeccion espectral asociada con un observable A y un con-

junto BOREL B, podemos interpretar a este observable como “prueba de ensayo” de
si A toma o no, un valor en B.
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VON NEUMANN considera que P representa a una propiedad fisica del sistema
(o mejor dicho, de los estados del sistema). Comenta:

“la relacion entre las propiedades de un sistema fisico, por una parte y las
proyecciones, por otra, hace posible una especie de calculo l6gico con éstas.
Sin embargo, en contraste con los conceptos de la 16gica ordinaria, este sis-
tema se extiende por el concepto de ‘Decidibilidad simultdnea’, que es carac-
teristico de la Mecénica Quéntica.” [VON NEUMANN, 1932, p. 253].

En efecto, si P y Q son proyecciones conmutativas, entonces su junta P V Q

y su concurrencia P A Q, en el reticulo P(H), pueden interpretarse cldsicamente, co-

mo la representacion de la opcion y de la conjuncion entre las propiedades codifica-
das por Py Q; Ademads, la proyeccién P'=1 — P sirve como una especie de nega-
cion de P. Sin embargo, si P y Q no conmutan, entonces no son ‘“‘simultineamente

decidibles” y el significado de P A Q y de P V Q es menos claro. No obstante, P(H)

conserva muchos elementos de un dlgebra BOOLE y puede ser considerado como un

modelo algebraico para una légica proposicional no-cldsica. En particular, P(H) es

ortocomplementado y, por tanto, satisface leyes andlogas a las de DE MORGAN; mds
precisamente, el sub-ortoreticulo generado por cualquier familia de proyecciones
mutuamente conmutativas, es un adlgebra BOOLE.

2.2. Légica de Mecanica Quantica

Cabe destacar que VON NEUMANN habla de la simultdnea “decidibilidad” (es
decir, ensayabilidad) de propiedades, pero no distingue entre propiedades decidi-
bles e indecidibles per se. Clasicamente, por supuesto, cualquier subconjunto del
espacio de estados, cuenta como una propiedad categérica del sistema y nada, en
principio, nos impide tener la misma opinién en MQ. Sin embargo, s6lo los sub-
conjuntos del espacio de estados, correspondientes a subespacios lineales cerrados,
del espacio HILBERT, son asociados con observables y, asi, “decidibles” por medi-
cion. Si se adopta un positivismo bastante severo, segun el cual ninguna proposi-
cion no decidible es significativa, se llega a la doctrina aparentemente extrafia, de
que, para un sistema mecdnico-qudntico, el conjunto de propiedades significativas

forma, no a un dlgebra BOOLE, sino, mds bien, al reticulo P(H) de las proyecciones

en un espacio HILBERT H. Esta idea fue desarrollada por VON NEUMANN en un do-
cumento conjunto con GARRETT BIRKHOFF, titulado The Logic of Quantum Mecha-
nics [BIRKHOFF and VON NEUMANN, 1936].
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BIRKHOFF y VON NEUMANN observan que [P(H) conserva muchas de las ca-

racteristicas familiares del dlgebra de la 16gica proposicional cldsica —en particu-
lar, es ortocomplementado y por lo tanto, cumple con las leyes DE MORGAN. Sin
embargo, no es BOOLE; es decir, falla la Ley distributiva.

BIRKHOFF y VON NEUMANN llegan a sugerir que

“mientras que los logicistas generalmente, han asumido que las propiedades
L71-L73 de negacion fueron las menos susceptibles de soportar un anélisis
critico, el estudio de la mecanica apunta a las identidades distributivas L6
como el eslabon mas débil en el adlgebra de la l6gica.” [Birkhoff and von
Neumann, 1936, p. 839].

Como veremos en Seccion 7, esta observacion es algo més profunda que lo
que uno pueda imaginar, siendo interpretable en términos de la diferencia funda-
mental entre dlgebras HEYTING y ROM’s considerados como generalizaciones de
algebras BOOLE. Esta insinuacion de que el reticulo de proyecciones puede verse
como una logica proposicional, se ha entendido en un nimero de maneras muy di-
ferentes. Algunos la han visto como cuestionamiento de la correccion de la 16gica
clasica. Otros la han visto como que implica una menos drastica modificacion de la
teoria clasica de probabilidades. Como hemos visto, VON NEUMANN mismo [1932
§3.5], es bastante cauteloso, destacando que la equivalencia entre subespacios y
proyecciones induce a una especie de célculo 16gico. Del mismo modo, BIRKHOFF y
VON NEUMANN [1936 §0] concluyen que, mediante argumentos heuristicos, se pue-
de, razonablemente, esperar encontrar un cdlculo de proposiciones para sistemas
mecanico-qudnticos que es formalmente, indistinguible del calculo de subespacios
y se asemeja al habitual cdlculo l6gico.

Mis radical es la opinion de FINKELSTEIN [1968, 1972], de que la l6gica es,
en cierto sentido, empirica; una opinion defendida por luminarias filosoficas tales
como PUTNAM [1968, 1976]. FINKELSTEIN destaca las abstracciones que hacemos al
pasar de la mecanica a la geometria y a la 16gica y sugirié que los procesos dinami-
cos de fractura y flujo, ya observados en los dos primeros niveles, también deben
presentarse en el tercero.

PUTNAM, por otra parte, sostiene que las patologias metafisicas de superposi-
cién y complementariedad no son més que objetos de contradicciones 16gicas gene-
radas por un uso indiscriminado de la ley distributiva.

Este punto de vista de la materia, que sigue siendo popular en algunos reduc-
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tos,’ depende de una lectura de la proyeccién P como codificacion de una propie-
dad fisica del sistema quantico y, en el supuesto de que sélo las propiedades fisicas
cuentan, en ultima instancia, como significativas (o en cualquier caso, como funda-
mentales). Sin embargo, hay una forma diferente de interpretar a P; a saber, que co-
difica a una declaracion sobre el posible resultado de una “medicion”. Asi, si A es

el operador autoadjunto correspondiente al observable A y P = P,(B), es la proyec-
cion espectral de A, correspondiente al conjunto BOREL B, se podria interpretar a P
como codificacion de la proposicioén de que, si se hace, una medicién de A produ-

ciria un valor en B. Esta interpretacion, usualmente denominada operacional, guio
a MACKEY en su reconstruccion de la Mecanica Quantica VON NEUMANN (MQVN),
a la que pasamos ahora.

3. ELPROGRAMA MACKEY

En un influyente articulo [1957], posteriormente ampliado en una monogra-
fia [1963], GEORGE MACKEY argumento:
(a) que se podria reconstruir mayormente, si no todo, el aparato de la MQVN, a
partir de la premisa de que las proposiciones experimentales forman un ortoreticulo

1isomorfo a P(H)
y
(b)  que esta misma premisa podria estar motivada independientemente, por con-

sideraciones muy generales sobre como se deben considerar modelos probabilisti-
cos de sistemas fisicos.

3.1. Mecanica Quantica como Calculo de Probabilidades
MACKEY interpretdé MQ como si fuera simplemente, un calculo de probabili-
dades no clasico, en el cual el dlgebra BOOLE de eventos, de la Teoria Cléasica de

Probabilidades, se sustituye por el reticulo P(H). Mds exactamente, MACKEY hizo

hincapié en que tanto los estados, como los observables de un sistema mecanico-

3 Por ejemplo, BAMBERG y STERNBERG [1990, pp. 833-835] escriben: "de hecho, [la Mecdnica
Quantica] representa la revolucion mas profunda en la historia de la ciencia, porque modifica las
normas elementales de la légica. . . . La ley distributiva no se mantiene en Ldgica Qudntica.
Como mencionamos anteriormente, la validez de la MQ se ha demostrado experimentalmente,
una y otra vez durante los ultimos sesenta anos. Asi que el experimento ha demostrado que se
debe abandonar uno de los mas preciados principios de 16gica, cuando se trata con observables
cudnticos."



Alberto Mejias

quantico, pueden definirse, exclusivamente, en términos de P(H).

En primer lugar, cualquier estado estadistico W determina una medida de

probabilidad en P(H), a saber, la asignacion
oy PH) —[0,1]; P — tr(PW).

Un profundo teorema debido a Gleason [Gleason, 1957; DVURECENSKIL, 1993]

muestra que, reciprocamente, cada medida de probabilidad, c-aditiva en P(H) tiene
esta forma.

En segundo lugar, un observable con valores en el espacio medible (S, §), se
puede representar por una medida proyecto-valuada (con valores proyecciones)
M: § — P(H),

donde, para cada conjunto medible B € §, la proyeccién M(B) se toma para codifi-
car la “proposicion experimental”: ‘una medicion del observable da un valor en el

conjunto B’. Evidentemente, podemos retrotraer medidas de probabilidad en P(H),

a lo largo de M, para obtener una medida de probabilidad clasica, sobre §. Inter-

pretamos que M >l<(a)) = w o M, da la distribucion estadistica de los valores de M(S)

cuando el sistema esta en el estado representado por w. En otras palabras,
wy(M(B)) = tr(M(B)W),

representa la probabilidad de que el observable representado por M producird un
valor en el conjunto B, si se mide, cuando el estado del sistema se representa por W.

Esto conecta con la teoria VON NEUMANN de representacion de observables
como operadores, en forma natural, como sigue: Si 2 § — R es cualquier variable

aleatoria real, acotada, clasica, definida en S, podemos definir al operador autoad-
junto

Ap = fis)dM(s),

en la forma habitual.* Asi, para cualquier medida de probabilidad u en P(H), tene-

4 Si fes no negativa, entonces A viene dado por el supremo de los operadores Ag =X g.M(B),
donde g = X. g, B, es una variable aleatoria simple, con 0 < g <f.

8
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mos
Eyp o) = | J($)dM™ (u)(s) = tr(A, W),

donde W es el operador densidad, correspondiente a u.
Este punto de vista de 1a MQ es sorprendentemente poderoso.

El teorema GLEASON, junto con el teorema espectral, los resultados clasicos
de STONE, WIGNER, WEYL y VON NEUMANN Yy el propio trabajo de MACKEY sobre
representaciones unitarias inducidas, permiten esencialmente, derivar todo el apa-
rato de MQ no relativistica (incluyendo su dindmica unitaria, las RCC’s, etc.), a
partir de la premisa de que la 16gica de proposiciones experimentales esta represen-

tada por el reticulo de proyecciones P(H). Para un esbozo de esta reconstruccion,

véase [MACKEY, 1963] o [BELTRAMETTI y CASSINELLI, 1981]; para un recuento de-
tallado, ver [ VARADARAIJAN, 1968].

3.2. Axiomatica MACKEY

No obstante su €xito, la consideracion MACKEY de MQ como célculo de pro-
babilidades todavia se basa en un innegable elemento ad hoc: el espacio HILBERT
H, mismo. En efecto, una vez que se juega con la idea de que las proposiciones
contrastables asociadas a un sistema fisico, no tienen que formar un algebra BOOLE;
se abre la puerta a una gran variedad de otras posibilidades. Entonces se convierte
en un asunto de urgencia, entender por qué la naturaleza (o alguien) deberia esco-
ger modelar sistemas fisicos en términos de reticulos de proyecciones de espacios
HILBERT, en lugar de algo mds general. MACKEY esbozé un ambicioso programa
para hacer esto, deduciendo el modelo de espacio HILBERT, a partir de un conjunto
de axiomas mds primitivos e, idealmente, mas transparentemente plausibles, para
un cdlculo de eventos.

El marco que adopta MACKEY, es una estructura abstracta (O, S, p), donde O

representa al conjunto de los “observables” con valores reales y S al conjunto de

“estados” de un sistema fisico. Estos estdn conectados por una asignacién
p:OXSE—A: (A, 5)—p(-ls),

donde A es el conjunto de medidas BOREL de probabilidad, sobre la recta. La inter-
pretacion prevista es que p,( - Is) da la distribucion estadistica de los valores de una

medicion del observable A € O, cuando el sistema esta en el estado s € S. Podemos

tomar el par (A, B), donde A € Oy B es un conjunto BOREL real, para representar a
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la “proposicion experimental” de que una medicion de A da (darfa, ha dado) un va-
lor en B. MACKEY considera a dos de tales proposiciones, equivalentes syss tienen
la misma probabilidad en cada estado —en otras palabras, (Al, Bl) y (Az’ Bz) son

equivalentes syss las asignaciones asociadas P, . z: = p,. (B; | - ) son iguales. El
1 1 1

conjunto L de tales asignaciones P, g, que €l llama cuestiones, es Logica Quantica
MACKEY.

Ahora, ordenado puntualmente sobre S, el conjunto L es un conjuntopo orto-

complementado con unidad 1 dada por P, | para cada observable A, cuya ortocom-

plementacion viene dada por P;L p=1-b p=F Digamos que las cuestiones

A, R\B"

P, Q € L son compatibles syss P =P, py Q =P, - para algin observable comun A
y algun par de conjuntos BOREL B y C. Entonces podemos considerar a P y Q como
“simultaneamente medibles”. Ademads, digamos que las cuestiones P, Q € L, son

ortogonales (o “disjuntas”, en lenguaje MACKEY) syss P < Q'. En tal caso, escribi-
mos P L Q. En este punto MACKEY impone su

Axioma V: Si P; es una familia contable de elementos mutuamente ortogona-
les, en L, entonces existe un elemento P € L tal que P=P; + P, + - - -

Este axioma garantiza que L es un conjuntopo -ortomodular ¢ un c-conjuntopo or-
tomodular (c-COM) —es decir, L satisface las dos condiciones

(a)  Cada familia contable de elementos mutuamente ortogonales P; € L tiene una
junta (minima cota superior) Vl P.enLy

(b) SiP<Q,entonces (QAP)VP=0.
En cualquiera de tales conjuntopos L, se pueden definir medidas de probabi-
lidad, mediante asignaciones u: L — [0, 1] tales que u(1) = 1y, para cualquier fa-

milia contable de elementos mutuamente ortogonales, P; € L, se tiene u(V. P,) =

Ei u(P;). También podemos definir, dados dos cualesquiera 6-COM L y M, una me-
dida M-valuada en L, como una asignacion a: L — M tal que a(l;) = 1,,y, para

cualquier familia contable de elementos mutuamente ortogonales, P; € L, tenemos

a(\/l. P) = Vl a(P;). Para una discusion general de dichas asignaciones en t€rminos
de observables, ver [PTAK 2000].

10



Logica Quantica Operatoral

Volviendo ahora al COM de cuestiones, L, MACKEY observa que
(a) Cadaestado s € S, define una medida de probabilidad §: L — [0, 1] por eva-
luacioén:
S(P, p) =Py p(s) = py(Bls).
(b) Cada observable A € O, define una medida L-valuada Ps: B(R) — L, via

Pa(B) = P, p, sobre los conjuntos BOREL reales (que, constituyendo un c-algebra
BOOLE, constituyen, sin duda, un 6-COM).

Reciprocamente, supongamos que L es cualquier 6-COM, y que S es cualquier
conjunto de medidas de probabilidad sobre L, que determinan orden —es decir,

u(p) < u(q) paratodo u € S, implica p < g. Sea O el conjunto de todas las medidas
BOREL L-valuadas en la recta y definamos p: O x § — A(R) por p (Blu) = u(a(B)).

Entonces la estructura (O, S, p) satisface los axiomas MACKEY, y, ademads, el COM
de cuestiones construido a partir de ella, es candnicamente isomorfo a L.

Como se ha observado [FOULIS 1962; GUDDER 1965], los axiomas MACKEY
definen la teoria de estructuras determinadas por pares (L, A) donde L es un o-
COM y A es una familia de medidas de probabilidad que determinan orden sobre L.
Dichos pares (habitualmente denominados légicas cudnticas en la literatura mate-
matica en las décadas de 1960 y 1970) han sido estudiados intensamente por mu-
chos autores. Para discusiones detalladas de COM en el contexto de LQ ver [BEL-
TRAMETTI y CASSINELLI 1981; GUDDER 1985; PTAK 2000; PTAK y PULMANNOVA

1991]. Por supuesto tales LQ’s estdn todavia muy lejos de la LQ estdndar P(H).

Entre otras cosas, el COM P(H) es un reticulo completo: existen juntas arbitrarias,

no solo juntas ortogonales contables. Aun asi, se podria esperar que un analisis mas

profundo — quizds involucrando axiomas adicionales — pudiera conducir a una

caracterizacion significativa y, lo ideal, a una motivacion para la LQ estandar. Este

fue el objetivo expreso de MACKEY:
“Idealmente, uno quisiera tener una lista de suposiciones fisicamente plausi-
bles, de la cual se pudiera deducir [el modelo de espacio Hilbert]. Debajo de
esto, uno quisiera una lista de la cual se pudiera deducir un conjunto de posi-
bilidades..., todas, salvo una, de las cuales podrian ser demostradas incompa-
tibles con experimentos debidamente planificados. Por el momento, dichas
listas no estan disponibles.” [MACKEY 1963, p. 72]

Este tema se encuentra en el corazon de la axiomatizacion original de PIRON, que se

11
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discutird en la proxima seccion. Por otro lado, como discutiremos en las secciones
Sy 6, el estudio autonomo de dichas estructuras conduce naturalmente a mds gene-
ralizaciones, en particular, a ortodlgebras y algebras de efectos. Ahora, antes de de-
dicarnos a una rdpida revision de algunos de los acontecimientos importantes ocu-
rridos desde la obra fundamental de MACKEY, hagamos algunos comentarios.

En primer lugar y ante todo, la caracteristica principal que separa al forma-
lismo MACKEY de las tendencias actuales en LQO, es la dependencia del primero,
de la probabilidad como un concepto primitivo. Mientras que se han hecho avances
importantes en este contexto, por ejemplo en [PULMANNOVA, 1986 a, b; GUDDER y
PULMANNOVA, 1987; PULMANNOVA y GUDDER, 1987], los trabajos mds contempo-

rdneos relegan la probabilidad a una nocién derivada.’ Esto no quiere decir que los
estados estadisticos son insignificantes en LQO. Sin embargo, han pasado de la si-
tuacion de un concepto primitivo algo vagamente interpretado, a la de un instru-
mento estructural bien definido. Aqui puede hacerse mencion de la caracterizacion
de los espacios de estados de la LQ estdndar, que culmina en la prueba por NAVA-
RA, de la independencia del grupo de automorfismos, del centro y del espacio de es-
tados, de una l6gica cuéntica [Navara 1992]. Una excepcion notable a esta tenden-
cia es la teorfa de efectos de decision, introducida por GUNTHER LUDWIG durante la
revision de su texto cldsico [1954, 1955]. Este trabajo se basa en la clasificacion de
nociones macroscopicas en piezas preparativas y efectivas que participan en las in-
teracciones de medicion mediadas por portadores de accion.

No entraremos en los detalles del esquema axioméatico de LUDWIG, sucesi-
vamente refinado en [LUDWIG, 1964, 1967, 1968; DAHN, 1968; MIELNIK 1968,
1969; StoLz 1969, 1971; DAHN, 1972; LUDWIG, 1972] y codificado en el monu-
mental tratado [LUDWIG, 1985, 1987], sino que nos remitiremos a algunas observa-
ciones generales. La nocion primitiva de esta teoria es la de una relacion de proba-
bilidad definida sobre el producto cartesiano del conjunto de ensambles y el con-
junto de efectos; estos dos conjuntos se toman como inmersos en un conveniente
par de espacios BANACH.

> Por ejemplo, mientras que en [PIRON, 1964 §7], la probabilidad generalizada se discute como
una util heuristica fisica, en [JAUCH y PIRON, 1969 §5] los estados se definen como conjuntos
maximales de propiedades reales del sistema. Del mismo modo, mientras que el formalismo
introducido en [RANDALL y FOULIS, 1970; FOULIS y RANDALL, 1972; RANDALL y FOULIS, 1973]
se refiere explicitamente a estadisticas operatorales, en [FOULIS, PIRON y RANDALL, 1983;
RANDALL y FOULIS, 1983; FOULIS, GREECHIE y RUTTIMANN, 1992, 1993] se pone énfasis en el
concepto de estados en términos de concomitancias en el espacio de resultados asociado al
sistema.
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En algun sentido, entonces, la obra de LUDWIG y sus colaboradores corre pa-
ralela al campo de LQO tal como la hemos presentado, centraindose mas en la es-
tructura analitica funcional del problema que en sus aspectos algebraicos ordena-
dos. Como tal quiza tiene una relacion mds formal con la teoria cuantica algebrai-
ca, de SEGAL [1947] y de HAAG y KASTLER [1964], que con las teorias operatorales
de PIRON y FOULIS-RANDALL que se debatirdan a continuacion.

Sin embargo, una caracteristica fisica notable del trabajo de LUDWIG es que
trata de lidiar con la nocién de mediciones no ideales, utilizando operadores sub-
proyectivos. Notese que dichos operadores aparecen naturalmente en las discusio-
nes de localizabilidad generalizada [JAUCH y PIRON, 1967; AMREIN, 1969].

Para revisiones generales de diferentes aproximaciones a la Mecanica Quén-
tica Operatoral, ver [GUDDER, 1977, 1979, 1981; LUDWIG y NEUMANN, 1981], para
un andlisis detallado de la relacion entre los enfoques de PIRON y LUDWIG ver
[CATTANEO y LAUDISA, 1994; CATTANEO y NISTICO, 1993] y para tener una visién
general de la aplicacion de medidas positivas con valores operadores, a cuestiones,
en fundamentos de MQ véase [BUSCH, LAHTI y MITTELSTAEDT, 1991; SCHROECK,
1996].

4. ELTRABAJO DE PIRON

CONSTANTIN PIRON [1964] realiz6 un progreso significativo en ambos extre-
mos del problema de completar y ampliar el programa MACKEY, lo cual se desarro-
116 en lo que se conoce como el enfoque de la Escuela de Ginebra, de la Fisica
Quantica.

PIRON caracteriz6 abstractamente, a los ROM’s completos representables co-
mo reticulos de subespacios cerrados de espacios HILBERT generalizados. También
proveyo un andlisis profundo de las ideas fisicas basicas de MQ que ayudaron a
motivar a los supuestos necesarios en su teorema de representacion, como axiomas
generales razonables. En esta seccion se describe una version formal de estos axio-
mas en el espiritu de [PIRON, 1976], antes de hacer algunas observaciones sobre a-
contecimientos mas recientes.

4.1. El Teorema de Representacion

El reticulo de proyecciones P(H) tiene una estructura mucho mds regular que

el general COM proporcionado por los axiomas MACKEY. En particular, P(H)

(a) es un reticulo completo —es decir, existen la concurrencia y la junta para
cualquier subconjunto de L;

13
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(b) es atomistico —es decir, cada elemento de P(H) es la junta de los dtomos

(aqui, las proyecciones unidimensionales) por debajo de él;

(c) cumple con la ley del cubrimiento atomico: si P € P(H) es un dtomo y Q €

P(H), entonces P V Q cubre a Q, es decir, es un dtomo en el reticulo {M € LI Q <
M};
(d) es irreducible —es decir, no puede factorizarse como producto directo no tri-

vial. Equivalentemente, ningiin elemento de P(H), que no sea 0 6 1, conmuta con

todos los demas elementos.®

En su tesis [PIRON, 1964], PIRON probé un reciproco parcial, es decir que to-
dos los reticulos L (de longitud suficiente) pueden ser interpretados como conjuntos
de subespacios biortogonales, de un espacio HILBERT generalizado. Explicitamente,
considerando la (esencialmente) Uinica inmersion de L en una geometria proyectiva,
que preserva la concurrencia y los dtomos y aprovechando la realizacion de espacio
vectorial estdndar de las geometrias proyectivas de dimension, por lo menos, tres,
mostré que la imagen del reticulo original podria caracterizarse por una forma her-
miteana definida.’

6 Desde luego, no todo sistema mecédnico-quantico es irreducible; sino que, en general, se des-
compone en una familia de sistemas puramente cudnticos, indizados por reglas de
superseleccion. Por ejemplo, [Piron 1964] muestra que cada ROM que satisface los axiomas (a) —
(c) es unidn directa de una familia de reticulos irreducibles, siendo su geometria proyectiva unién
directa de las geometrias correspondientes. Abstractamente, los sistemas con reglas de superse-
leccion discretas, pueden ser tratados tomando medidas con valores proyecciones, en un a-
propiado dlgebra VON NEUMANN 2. Si el ROM inducido L(2l) no contiene a un sumando de tipo

15, entonces se aplica el teorema GLEASON: cada medida c-aditiva de probabilidad en L(2l) se

extiende unicamente a un estado normal sobre 2 [CHRISTENSEN, 1982; YEADON, 1983]. Para ma-

yor discusion véase, por ejemplo, [BUNCE y HAMHALTER, 1994; BUNCE y WRIGHT, 1994;
HAMHALTER, 1993, 1995].

7 Este desarrollo se ha hecho mucho mds fisicamente transparente y matemadticamente elegante a
partir del trabajo seminal de FAURE y FROLICHER [1993, 1994, 1995], donde la construccion de
representaciones lineales para las geometrias proyectivas y sus morfismos es elaborada de una
manera categorialmente natural. Por ejemplo, una relacién de ortogonalidad determina un
morfismo de la geometria proyectiva a su dual y asi, una aplicacion cuasilineal del espacio
vectorial subyacente a su dual. De esta manera el producto interno de la MQ, obtiene una base
rigurosa y limpia.
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Ahora, para un arbitrario espacio producto interno, V, el ortoreticulo atomis-
tico completo L(V) de subespacios biortogonales, no tiene que ser ortomodular.
Cuando lo es, V se denomina espacio Hilbert generalizado. Esta terminologia esta
motivada por otro resultado llamativo; a saber, si V es un espacio producto interno

sobre uno de los anillos de divisidn, estandar (es decir, R, C 6 H), entonces L(V) es

ortomodular syss V es completo. Esto fue probado primero por PIRON, usando una
hipétesis sobre extensiones de medidas, que resultd ser independiente de la Teoria
de Conjuntos ZF; bajo influjo de STONE, mds tarde, una prueba geométrica fue ob-
tenida por AMEMIYA y ARAKI [1965].% Finalmente, diremos que el formalismo de la
Escuela de Ginebra, que fue inspirado por este teorema, ha sido ampliamente apli-
cado a varios problemas de cardcter mas o menos concreto, por ejemplo, simetrias
[EMCH y PIRON, 1962, 1963], reglas de superseleccion [PIRON, 1965, 1969], obser-
vables [PIRON, 1971; GIOVANNINI y PIRON, 1979; GIOVANNINI, 1981a, b, c], proba-
bilidad a priori [PIRON, 1972] y procesos irreversibles [GISIN y PIRON, 1981; GISIN,
1981, 1982 a, b, 1983 a, b].

4.2. Axiomatica PIRON

Los axiomas MACKEY producen s6lo un COM o-completo L —Ilo cual dista
mucho del ROM ortomodular atomistico completo, considerado en el Teorema de
PIRON. PIRON fue capaz de motivar la estructura adicional necesaria en el contexto
de un marco axiomatico similar al MACKEY, pero difiriendo de €1, en que toma co-
mo bésico, no el concepto de probabilidad, sino un concepto de propiedad fisica,
basado en la certidumbre de obtener un resultado experimental. Aqui PIRON, cons-
cientemente, aprovecha el trabajo de DIRAC [1930 §1.2], que da una discusién ope-
ratoral de la polarizacion de la luz, en términos de la certidumbre o, de otra manera,
del paso a través de un cristal apropiado y la concepcion de EINSTEIN, PODOLSKY y
ROSEN [1935], de que los elementos de la realidad son condiciones suficientes para
que uno sea capaz de predecir una cantidad fisica con certidumbre y sin perturbar al
sistema.

8 Téngase en cuenta que recientemente, se han encontrado condiciones necesarias y suficientes
para que el anillo de divisién subyacente sea estindar —una de las declaraciones mas simples en
el caso infinito dimensional, es que el espacio vectorial admite una sucesion ortonormal infinita
[SOLER, 1995; HOLLAND, 1995; PRESTEL, 1995]; para ver un ejemplo de un espacio HILBERT
generalizado no estdndar, ver [KELLER, 1980], para una discusion detallada de la geometria de los
espacios HILBERT generalizados, ver [GROSS, 1979, 1990] y, para una reseila de otros resultados
de complecion, ver [DVURECENSKI, 1992].
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PIRON comienza con un conjunto primitivo Q de cuestiones —que represen-

tan proyectos experimentales definidos, que tienen s6lo dos resultados posibles,
que designamos como si y no. Para facilitar la presentacion consideremos dado, un

conjunto P de procedimientos de preparacion.’ Para P € Py a € Q, escribimos P

F a para indicar que la preparacion P es tal, que puede predecirse con certidumbre,
que la respuesta a la cuestion a, es si. Entonces podemos asociar, a cada cuestion a,
la proposicion

[a] = {P € P|PEa}.
Sea L == {[a] | o € Q } el conjunto de todas esas proposiciones, considerado como

conjuntopo con respecto a la inclusiéon de conjuntos. Nétese que [a] < [f] syss cada
preparacion que hace vélida a a, también hace vélida a . PIRON procede a aducir

varios axiomas cuya fuerza es la de hacer a £ un ROM atomistico completo, que
satisface la ley de cubrimiento.

L es un reticulo completo. El primero y, probablemente el mas novedoso, de estos
axiomas; involucra la nocion de cuestion producto. Dado un conjunto no vacio de
cuestiones, su producto es la cuestiéon o = I1A, definido como sigue: para plantear
a, se selecciona, de la manera que se quiera, una cuestiéon S € A y, planteando esta
cuestion, se atribuye a a la respuesta obtenida. El primer axioma de PIRON requiere
que Q sea cerrado con respecto a la formacion de cuestiones sobre productos arbi-

trarios. Un momento de reflexién revela que [I1A] = N fea [A]. Por lo tanto, £ es
cerrado bajo intersecciones arbitrarias y, por tanto, un reticulo completo. !
Ortocomplementacion. Si a es cualquier cuestion, podemos definir una cuestién

inversa o~ intercambiando los papeles de si y no. PIRON requiere que Q sea cerrado
bajo la formacion de inversas. La interpretacion prevista nos obliga a suponer que

? Noétese que esto no es estrictamente necesario, sino que es sélo un expediente para evitar
locuciones tales como “si el sistema estd o, ha sido preparado, de tal manera que...” Del mismo
modo, la identificacién usual de proposiciones con clases de equivalencia de cuestiones, estd
hecha para facilitar la exposicién y no debe tomarse formalmente, como una definicién.

1014 operacion producto fue introducida primero en [JAUCH and PIRON, 1969]. La concurrencia

habia sido introducida antes, mediante conjuncion semantica [Piron 1964] o filtros limites [Jauch,
1968].
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[a] N [a~] = @. Para asegurar una ortocomplementacién sobre £, PIRON introduce
otro axioma, a saber, que para cada cuestion a, existe un complemento compatible
B € [a] que satisface [~] V [a] = 1.1
Ortomodularidad. Aparentemente, esto no descarta la posibilidad de que existan
varios complementos compatibles para un a dado, no equivalentes. Sin embargo,
esto se resuelva por un tercer axioma PIRON

Axioma P: Si b < cy b'y ¢’ son complementos compatibles para by c, respec-
tivamente, entonces el subreticulo de £, generado por b, c, b’, ', es distributivo.
Se deduce que los complementos compatibles son unicos, definiendo, por tanto una
ortocomplementacién. Ademds, el axioma P determina que £ es ortomodular: si b <
¢, entonces (¢ Ab") V b = ¢, por la distributividad de {b, c, b, ¢”}.

Atomicidad y ley de cubrimiento. PIRON impone la atomicidad del reticulo con un
axioma ad hoc (Al) requiriendo que L sea atdmico —es decir, cada elemento do-

mina al menos a un dtomo. También impuso directamente la ley de cubrimiento
(como axioma A2), pero con una motivacion substancial, como sigue. Sea X, el

conjunto de los 4tomos de L. Ahora, en cada conjuntopo ortocomplementado L, la
aplicacion SASAKI ¢: L x L — L, viene dada por ¢(a, b) =b A (b'V a). Si b es fijo,
escribimos ¢,: L — L para asignacion ¢, (a) = ¢(a, b) = b A (b'V a). Notese que L
es ortomodular syss ¢»(a) = a para todo a <b, en cuyo caso ¢,(a) Vb'=a VvV b'. Con
estas observaciones, no es dificil demostrar que un ROM L satisface la ley de cu-
brimiento atémico syss para todo a € L, tenemos a €%, & b ¥ a = ¢,(a) € Z,.

Entonces tenemos una formulacion alternativa de la ley de cubrimiento, a saber,
que las proyecciones SASAKI asignan dtomos a dtomos o a 0.

PIRON define al estado del sistema como el conjunto de todas las proposicio-
nes p = [a] que son vélidas (en un momento dado, en una situaciéon dada). Natu-
ralmente se requiere que el estado sea cerrado con respecto a la interseccion y la

ampliacion, es decir, que sea un filtro completo en el reticulo £. Un tal filtro es

"Bl hecho de que un axioma deba ser postulado para garantizar la existencia de una ortocomple-
mentacion, se debe al hecho de que los inversos de cuestiones equivalentes no tienen que ser e-

quivalentes. Por ejemplo, 0 - /=0 sin embargo (0-7) =0 -1 =1-0=0y 0 =1 Parauna
discusion de algunas confusiones sobre este punto, ver [FOULIS and RANDALL, 1984].
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principal y generado por un dtomo. Por lo tanto, los estados pueden ser representa-
dos por dtomos.'? 13 Finalmente, diremos que a, b € £, son compatibles syss {a, b,

a',b'} es distributiva syss ¢p(a) =a A b. PIRON llama a las cuestiones

(a) ideales syss cada proposicion compatible con [a], que es valida antes de una
medicion de a, también es vélida después, cuando el resultado de esa medicion es
A

(b)  de primera clase syss la respuesta a a inmediatamente después de asegurar la
respuesta si es vdlida, sea otra vez, si.

Considerando al axioma A2 (es decir, la ley de cubrimiento), se puede entonces

probar que, para f una medicion ideal de primera clase de b € L, si a es el estado

antes de la medicidn, entonces el estado, después de asegurar si sobre la medicion
de a, es ¢, (a).

Muchas personas han encontrado convincente al razonamiento fisico que
motiva los axiomas PIRON. Sin embargo, este marco resulta tener algunas limita-
ciones agudas. En particular, un sistema formado por dos sistemas "separados”, en
el sentido de AERTS [1981, 1982], cada una de los cuales, individualmente, obedece
a los axiomas PIRON, conformaria como un todo, a estos axiomas si y s6lo si uno de
los sistemas es cldsico. Para probar este resultado clave, AERTS aprovecha la no-
cion de relacion de ortogonalidad, segin la cual dos estados son ortogonales si
existe una cuestion que es vdlida para el primero e imposible para el segundo. El
uso de esta relacion se ha vuelto central en axiomatizaciones mas recientes del en-
foque Escuela de Ginebra, como [PIRON, 1990; MOORE, 1999]. Para un andlisis de-
tallado, ver [VALCKENBORGH, 2000]. Né6tese que en estas obras, la atencion se cen-
tra en ortoreticulos atomisticos completos como modelos para las axiomatizaciones
mads directas basadas en la dualidad entre el estado y las descripciones de propieda-
des de un sistema fisico. Un poco paraddjicamente, entonces, el enfoque PIRON
mantiene un axioma rechazado en el enfoque COM — es decir, complecion — y
rechaza otro que mantiene el ultimo — a saber (alguna forma de) ortomodularidad.
Como veremos en la siguiente seccion, este escote es sintomético del hecho de que

12 Reciprocamente, si p # 0, entonces p = [a], donde a es una cuestion que es vélida para, al
menos, una preparacion. Asi, existe al menos un estado (es decir, cualquier estado compatible
con esa preparacion) que contiene a p. Por lo tanto, deben haber suficientes estados de modo que,

para cada p en £, hay un estado/dtomo a = p. Pero esto implica inmediatamente, que cada dtomo

es un estado. Por lo tanto, los estados corresponden exactamente a &tomos de L.
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uno debe distinguir conceptualmente al reticulo de propiedades de un sistema de su
l6gica, aun cuando resulten ser isomorfos.

5. ELTRABAJO DE FOULIS Y RANDALL

Contemporaneo con estos acontecimientos, se desarrolld el trabajo de DAVE
FouLis y el de CHARLIE RANDALL sobre Ldgica Empirica, una sintesis feliz de 1-
deas procedentes de sus respectivas tesis doctorales, en Teoria abstracta de Reticu-
los [FouLis, 1958] y Estadistica Operacional Concreta [RANDALL, 1966]. Este for-
malismo, no s6lo proporciona una potente heuristica general, sino, como veremos,
también ha puesto el fundamento para varios de los desarrollos puramente matema-
ticos que se discutirdn a continuacion.

5.1. Espacios de Ensayos

Tanto MACKEY como PIRON comienzan con una estructura primitiva en la
que estdn sin relacionar, para distintos observables, proposiciones experimentales
de la forma "el observable A toma valores en el conjunto B". En efecto, cada ob-

servable A se asocia a un dlgebra BOOLE B, de acontecimientos posibles (isomorfo

al campo BOREL en el esquema MACKEY y a {0, 1} en el PIRON), siendo estos dlge-
bras BOOLE, inicialmente, disjuntos uno del otro. Luego se hacen identificaciones
entre dlgebras BOOLE correspondientes a diferentes observables. En el esquema
MACKEY, proposiciones primitivas (A,, B,) y (A,, B,) son identificadas syss son
equiprobables en cada estado; en el PIRON, syss son vélidas en exactamente, las
mismas situaciones. Ambas aproximaciones a la construccion de la l6gica cudntica
han sido objeto de algunas criticas. En particular, tal como sefiala un nimero de au-
tores, ambas se hacen problemdticas cuando uno considera mediciones compuestas
o iteradas."?

En una serie de documentos (p. €j. [FOULIS and RANDALL, 1972, 1974, 1978,
1981a; RANDALL and FouLis, 1970, 1973, 1978, 1983a]), FOULIS y RANDALL desa-
rrollaron una extensa teoria —que denominan légica empirica— en la cual estas i-
dentificaciones son dadas a priori, sin referencia previa a cualquier concepto de es-
tado o propiedad. Su formalismo se basa en la nocidn primitiva de operacion o en-
sayo —es decir, un conjunto definido de posibles resultados alternativos, mutua-
mente exclusivos. La teoria FOULIS-RANDALL se enfoca en espacios de ensayos, es

13 Un ejemplo simple se ofrece en [COOKE and HILGEVOORD, 1981]. El punto es familiar —
incluso en mecdnica cudntica con espacios HILBERT ortodoxos, se debe hacer un seguimiento de
las relaciones de fase al discutir experimentos iterados y estos se pierden cuando uno identifica
proposiciones experimentales segin los esquemas de MACKEY 6 de PIRON.
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decir, colecciones 2l de ensayos superpuestos. Se entiende que se dar4 la identifica-

cion de los resultados entre distintas pruebas, es decir, FOULIS y RANDALL no esta-
blecen ninguna doctrina con respecto a como deben hacerse esas identificaciones.

Denotando por X = Ul al espacio de resultados de 21, un estado estadistico se de-
fine como una asignacion w: X — [0, 1], tal que Zx ¢ p@(x) = 1 para cada ensayo E

€ 2 y un estado realistico es representado [FOULIS, PIRON and RANDALL, 1983] por

una cierta clase de subconjunto de X, llamado un soporte, que representa a la totali-
dad de los resultados posibles en ese estado. Notese que, aparte de sus propios mé-
ritos, este concepto puede ser utilizado para dar un tratamiento matematico perspi-
cuo de axiomatica PIRON; véase [RANDALL and FOULIS, 1983b] y [WILCE, 1997].

Se puede acoplar un nimero de objetos algebraicos, analiticos y de orden a
un espacio de ensayos %I, cada uno sirviendo de manera ligeramente diferente, co-

mo una especie de "ldgica". Bajo condiciones normativas simples sobre la estructu-
ra combinatoria de %A, éstos resultan coincidir con estructuras mas familiares. En

particular, si 2 es “algebraico”,'* se puede construir a partir de los eventos de 2,

una bastante bien comportada, estructura algebraica parcialmente ordenada I1(20),

llamada un ortodlgebra. Estos se pueden definir abstractamente: un ortodlgebra es
un par (L, @) donde L es un conjunto y @ es una operacion binaria parcial asociati-
va, conmutativa, en L, que cumple las tres condiciones siguientes:

(a)  Existe un elemento neutro 0 € L tal que, paracadape L,p @ 0=p.

(b)  Existe un elemento unidad 1 € L tal que, para cada p € L, hay un tnico g €
L,conp ®qg=1;
(c) Sip @ pexiste, entonces p = 0.

Asi, los ortodlgebras generalizan a los COM’s, que se pueden definir como
ortodlgebras en los cuales, dado que p @ g, g @ r y r @ p existen, el elemento p @ g
@ r también existe. Este axioma, llamado de ortocoherencia, es en realidad una
version finitistica del axioma MACKEY, V. Reciprocamente, desdefiando la condi-
cion (c), obtenemos lo que se llama un dlgebra de efectos, llamado ortodlgebra ge-

4 Un espacio de ensayos es algebraico si dos elementos cualesquiera con un complemento co-
miun, comparten exactamente, los mismos complementos, donde A y B son complementos si son
disjuntos y A U B es un ensayo.
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neralizado por [GIUNTINI and Greuling, 1989] y D-conjuntopo por [KOPKA, 1992]

5.2. Ortoalgebras

Los ortoalgebras y dlgebras de efectos son objetos suficientemente regulares
como para tener una interesante teoria matematica (una que solo estd empezando a
ser explorada). En particular, casi todo el aparato conceptual de la LQ basada en
COM’s, tales como centros [RUTTIMANN, FOULIS and PULMANNOVA, 1995] y pro-
yecciones SASAKI [BENNETT and FOULIS, 1998; WILCE, 2000], pueden extenderse
bastante ficilmente a este contexto mas general. Por otro lado, debido a su simpli-
cidad, los espacios de ensayos son, a menudo, mucho mas féacil de manipular que
sus asociados "logicas". También tienen la ventaja heuristica de que la interpreta-
cion operatoral estd, por asi decirlo, concorde en la superficie, con l6gicas que sir-
ven sO0lo como invariantes Uutiles. En particular, mientras que es completamente
sencillo combinar espacios de ensayos secuencialmente, los diversos "logicas" ra-
ramente permiten tales combinaciones. Por dltimo, si 2 es algebraico, existe una

asignacion candnica que preserva orden L — L, del légica de 2 en el reticulo de

propiedades asociado a cualquier entidad (2, X) sobre 2. Tanto en los ejemplos
mecanico-clasicos como en los mecanico-quanticos, esta asignacion es en realidad
un isomorfismo, asi que L hereda de £ la estructura de reticulo completo y £ here-

da de L una ortocomplementacion y una ortomodularidad. Este isomorfismo es, sin
embargo, la excepcion mds bien que la regla. Como han sefialado [FOULIS, PIRON

and RANDALL, 1983], la tendencia a identificar £ y L —aun cuando sean isomor-

fos— ha provocado una gran confusion innecesaria en las discusiones de los fun-
damentos y la interpretacion de la mecénica cudntica.

Ademads de su incomodidad en el trato con las mediciones secuenciales, otra
dificultad que se presenta con el esquema MACKEY de LQ, de nuevo reconocida
primero, por FOULIS y RANDALL [1979], es que no es estable en la formacion de
cualquier tipo de producto tensorial razonable. Dados LQ’s (L, A) y (L', A"), en el
entendido de cada uno que representa a un sistema "fisico", se quiere construir un
modelo (M, I') del sistema acoplado, en el que L y L' puedan mostrar correlaciones,
pero no interactdan directamente. Los requisitos minimos serian que
(a)  existe una asignacion L x L'— M, que lleva p, g a alguna proposicion repre-

sentativap ® g € M,y

(b) paracada par de estados u € A, v € A’, podemos formar un estadouy ® v € I’
tal que (u ® V)(p ® g) = u(P)v(q).
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Sin embargo, FOULIS y RANDALL producen un simple ejemplo que muestra que es-
to, en general, es imposible: un pequefio y finito ROM L, con un completo conjunto
de estados tales que no existe un tal "producto tensorial" para dos copias de L.

El culpable resulta ser el axioma MACKEY, V —o0, mds precisamente, la orto-
coherencia.

De hecho, se puede demostrar, bajo la suposiciéon muy tenue, de que los or-
todlgebras involucrados, cada uno lleva una familia unital de estados, que se pue-
den formar productos tensoriales de los ortodlgebras, de manera que se satisfagan
los desiderata (a) y (b) [FOULIS and RANDALL, 1981b; RANDALL and FOULIS, 1981].
Sin embargo, como ilustra el ejemplo recién considerado, la ortocoherencia no es
estable con respecto a estos productos tensoriales. Combinando estos resultados
con los resultados negativos mencionados, de AERTS, para reticulos de propiedades,
lo que aparece es que el isomorfismo entre 16gica y reticulo de propiedades, carac-
teristico de sistemas clasicos y cudnticos, se descompone cuando uno forma pro-
ductos tensoriales, a menos que los sistemas en cuestion, sean cldsicos. Esto no
quiere decir que los resultados sean totalmente negativos. Investigaciones posterio-
res en la estructura de los productos tensoriales [KLAY, RANDALL and FOULIS,
1987; GOLFIN, 1987; WILCE, 1990, 1992; BENNETT and FOULIS, 1993; DvU-
RECENSKI y PULMANNOVA, 1994; DVURECENSKD, 1995] revelaron que los pro-
ductos tensoriales FOULIS-RANDALL de entidades mecédnico-quanticas, aunque no
estrictamente quanticos, alin conservan una rica estructura geométrica.

Estos resultados dieron un impulso sustancial al estudio de ortodlgebras, es-
pacios de ensayos y otras estructuras mas generales que aquellas consideradas por
MACKEY y PIRON (algunas de los cuales seran discutidas mdas abajo). La teoria de
los espacios de ensayos, en particular, se ha desarrollado en varias direcciones en
las dltimas décadas. Un niimero de autores (por ejemplo, [DVURECENSKI) and PUL-
MANNOVA, 1994b; PULMANNOVA and WILCE, 1995; GUDDER, 1997]) han discutido
los espacios de ensayos generalizados, en los que se permite a los resultados ocurrir
con alguna multiplicidad o intensidad y éstos se han utilizado para proporcionar u-
na semantica operatoral para dlgebras de efectos, que es paralela a la semantica de
espacios de ensayos para ortodlgebras. En [HABIL, 1993] se ha discutido Teoria de
la Medida sobre ortodlgebras. NISHIMURA [1993, 1995] ha generalizado la idea de
espacio de ensayos, mediante la sustitucion de conjuntos discretos de resultados por
algebras BOOLE completas y locales. [WILCE, 2000] da un estudio actualizado de la
teoria FOULIS-RANDALL; para una vision personal del desarrollo histérico de este fi-
lamento de 16gica quantica operatoral ver [FOULIS, 1998, 1999].
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6.  Estructuras Ortomodulares.

Hasta el momento, nos hemos centrado en LQ como un programa interpreta-
tivo o fundamental en Fisica. Pero el tema tiene otras raices absolutamente inde-
pendientes en matemdtica pura. VON NEUMANN mismo, ha recalcado la importancia
de métodos de teoria del orden, en el estudio de andlogos infinito-dimensionales, de
Geometria Proyectiva. LooMIS [1955] y MAEDA [1955] independientemente, reco-
nocieron que una porcion de teoria de la dimension de dlgebras VON NEUMANN, po-
dria ser extendida a un entorno puramente tedrico-reticular, es decir, a un ROM
provisto de una adecuada relacion de equivalencia. Esto estimuld a algunos mate-
maticos a comenzar a investigar ROM’s en abstracto. Pronto se hizo evidente que
tales reticulos ocurren con naturalidad en una amplia gama de contextos matemati-
cos. Si (S, *) es cualquier semigrupo involutivo, llamemos una proyecciéon a un

elemento p € S que satisface p = p® = p*. Si S contiene un elemento cero (bilateral),

el dextro-anulador de x € S es el dextro-ideal {a € S| ax =0}. FOULIS [1958, 1960,
1962] define a un *-semigrupo BAER como un semigrupo involutivo §, con cero,
que tiene la propiedad de que el dextro-anulador de cualquier elemento x € S es el

dextro-ideal generado por una (necesariamente, uinica) proyeccion x'. Mostré que el
conjunto L(S) de proyecciones cerradas p = p", en S, siempre forman un ROM. Re-
ciprocamente, cada ROM se puede representar como L(S) para algun *-semigrupo
BAER. En efecto, aunque esta representacion no es Unica, hay una opcion candnica
de §; a saber, el semigrupo S(L) de las auto-aplicaciones residuadas de L, es decir,

las asignaciones ¢: L — L, para las cuales existe una asignacién . L — L, que sa-

tisface Y¥(x) <y' < x < ¢(y)'. Entre estas asignaciones estdn las proyecciones SA-
SAKI ¢, discutidas en Seccion 4, que resultan ser exactamente, las proyecciones ce-
rradas en S(L).

En las décadas siguientes, una substancial teoria pura de ROM’s fue desarro-
llada por FOULIS y otros. El estado de esta teoria a partir de la década de 1980, esta
representado por el libro de KLAMATH [1983]. [BRUNS and HARDING, 2000] discu-
ten acontecimientos mas recientes, de los cuales ha habido muchos.

Particularmente llamativo es el reciente descubrimiento por HARDING [1996,
1998], de que se puede organizar al conjunto de descomposiciones en productos di-
rectos de esencialmente, cualquier objeto algebraico en un COM.

Por otro lado, el trabajo continuado en el programa MACKEY también produ-
jo una variedad de estructuras mas generales que ROM’s y conjuntopos —ortoalge-
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bras, los atin més generales dlgebras de efectos y, en una direccion diferente, los 4l-
gebras BOOLE parciales de KOCHEN y SPECKER [1967]. Todos estos son objetos
principalmente, algebraicos parciales y, s6lo secundariamente, ordino-tedricos. Han
atraido, especialmente durante los ultimos afios, significativo interés matematico."

La teoria de algebras de efectos, gran parte de la cual es debida a la labor
pionera de FOULIS y M. K. BENNETT [BENNETT and FoOULIS, 1995, 1997; FouULIS
and BENNETT, 1994], se contintia desarrollando rapidamente. De particular interés
es aqui, su reciente reformulacion de una gran parte de la teoria de dlgebras de
efectos (y por lo tanto, de la LQ) como una rama de la teoria de grupos abelianos
ordenados, que también se discute en [FOULIS, BENNETT and RUTTIMANN, 1996;
FouLis, RUTTIMANN and BENNETT, 1998; WILCE 1995, 1998]. Este es el tema de
[FOUuLIS, 2000].

Finalmente, también se han estudiado ROM’s detalladamente, en el contexto
puramente 16gico y, en particular, la posibilidad de definir conectivos de implica-
c16n razonables. Uno de los resultados basicos en este sentido, es el de KALMBACH
[1974] que, aprovechando la caracterizacion de ROM’s libres sobre dos generado-
res [BRUNS and KALMBACH, 1973], fue capaz de demostrar que hay exactamente
cinco polinomios reticulares a — b, satisfaciendo la condicion implicativa primiti-

vaa<b & (a — b) = 1. Notese que aqui, la ortomodularidad es esencial, un simple

examen del no-ortomodular "anillo bencénico" que muestra que tales conectivos no
existen en el caso no-ortomodular [MOORE, 1993]. Para un analisis de la mas débil

condicion de exportacion a < b = (a — b) = 1, conjuntamente con el modus po-

nens, véase [HERMAN, MARSDEN and PIZIAK, 1975] y, para una investigacion deta-
llada del teorema de deduccién, ver MALINOWSKI [1990, 1992]. Por otro lado, la
definicion de una relacion Kripkeana de accesibilidad inducida a partir de la no-
ortogonalidad, una idea que tiene sus origenes en labor de FOULIS y RANDALL sobre
ortogonalidad lexicografica [1971], ha permitido la introduccién de la LQ modal
[DALLA CHIARA, 1977, 1983; GOLDBLATT, 1974, 1975]. Por supuesto, ha habido
mucho otros trabajos sobre las implicaciones en LQ; Para descripciones generales,
véase, por ejemplo, [DALLA CHIARA, 1986; VAN FRAASSEN, 1981; HARDEGREE and
FRAZER, 1981].

15 Un resultado notable es el de KOCHEN y CONWAY [KOCHEN, 1996], de que muy pequeios
conjuntos de proyecciones en P(H) generan una dlgebra Boole parcial que es densa en el reticulo

de proyecciones.
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7.  ASPECTOS DINAMICOS, CATEGORIALES Y COMPUTACIONA-
LES.

Cerramos considerando la reformulacion categorial de las nociones bdsicas
de estructuras de orden y su aplicacion a la Teoria Quantica Operatoral, un tema
con fuertes vinculos con varios desarrollos recientes en Teoria de Categorias Enri-
quecida y Semdntica Computacional. El instrumento basico de esta teoria, son los

pares f 1g,donde f: L = My g: M — L, son aplicaciones isdtonas entre conjunto-
pos, satisfaciendo la condicion de adjuncion f(a) <b < a < g(b).

Para un desarrollo aterrizado, de la teoria de adjunciones con un enfoque par-
ticular en sus aplicaciones operatorales, nos referimos a [COECKE and MOORE
2000]. Es divertido hacer notar que este concepto puede utilizarse para arrojar al-
guna luz sobre la observacion de BIRKHOFF y VON NEUMANN citada anteriormente,
de que mientras que los fildsofos han tendido a centrarse en la naturaleza de la ne-
gacion en légicas no clasicas, el estudio de MQ destaca la ley distributiva como el
eslabon mas débil en LQO. Para ver esto, observemos que los dlgebras HEYTING,
considerados como modelos para la l6gica intuicionista, pueden definirse como
aquellos reticulos que admiten un conexién de implicacién — que satisface la con-

dicién de adjuncién (x A a) <b & x < (a — b) [BIRKHOFF, 1940 §161; BIRKHOFF,
1942 §27].

Puesto que la condicién f - g implica que f preserva las juntas existentes y g
preserva las concurrencias existentes, cualquier dlgebra HEYTING es distributivo.

Por otro lado, gran parte de la teoria de estructuras de ROM’s se basa en la
llamada adjuncién SASAKI ¢ 1 ¢“, donde
p)=aA(@Vvx) y ¢x)=a"V(aAx)
[NAKAMURA, 1957; SASAKI, 1955].

En cierto sentido, podemos considerar a los dlgebras HEYTING como una cla-
se de reticulos distributivos donde aquellos elementos que poseen un complemento
pueden caracterizarse simplemente y a los ROM’s, como una clase de ortoreticulos
donde el conjunto de complementos de cualquier elemento, puede ser computado
simplemente.

Para discusiones de dlgebras HEYTING y reticulos semicomplementados mas
generales, ver [CURRY, 1963; FRINK, 1962; KOHLER, 1981; NEMITZ, 1965].
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Una de las primeras y mas importantes aplicaciones, de las residuaciones en
ROM’s fue el trabajo pionero de FOULIS sobre *-semigrupos BAER, descrito ante-
riormente. Esta investigacion no soélo ha conducido a una comprension mas profun-
da de la nocién de residuacién [BLYTH y JANOWITZ, 1972; DERDERIAN, 1967], sino
que también fue crucial en el desarrollo de los aspectos dindmicos de LQO. Uno de
los primeros de estos acontecimientos, fue el trabajo de POOL [1968a, b], que bus-
caba una interpretacion fenomenoldgica de los *-semigrupos BAER via la nocién de
probabilidad condicional suministrada por la teoria quantica de mediciones, con-
vencional.

Un enfoque mas claramente operatoral, a evoluciones en general, estuvo a
cargo de DANIEL [1982, 1989] y fue extendido por FAURE, MOORE y PIRON [1995],
conduciendo el ultimo a un estudio general de las categorias de espacios de estados
y reticulos de propiedades [MOORE, 1995, 1997]. Aqui una evolucién externamente
impuesta es modelada retrotrayendo proyectos experimentales definitivos, defini-
dos en el momento final, hasta sus imigenes definidas en el momento inicial. Me-
diante argumentos fisicos, esta aplicacion debe preservar el funcionamiento del
producto y asi, la concurrencia en el reticulo. Por lo tanto, en condiciones de esta-
bilidad apropiadas, su levo-adjunto, que preserva las juntas, describe la propaga-
cion del estado del sistema. Estas observaciones han sido generalizadas por AMIRA,
COECKE y STUBBE [1998], que explican la estructura de los ensayos operatorales
derivados de las nociones de libertad de eleccion y composicion. Notese que la ul-
tima de estas nociones en particular, juega un papel fundamental en la heuristica de
FouLIs y RANDALL antes mencionados.

Finalmente, la estructura abstracta de resoluciones operatorales ha sido ana-
lizada por COECKE y STUBBE [1999a, b, 2000], permitiendo, por ejemplo, un anéali-
sis de los conceptos fisicos de componibilidad [COECKE, 2000] y la dualidad entre
causalidad y propagacion [COECKE, MOORE and STUBBE, 2000].

Matematicamente, la estructura inducida a partir de las resoluciones operato-
rales, es la de un quantaloide, es decir una categoria cuyos conjuntos de morfismos
son reticulos completos con respecto a las juntas, de modo que la composicion se
distribuye a ambos lados sobre las juntas.'® Se obtiene asi, un ejemplo simple de
categoria enriquecida, en la cual los conjuntos de morfismos son objetos de alguna

16 Bl nombre quantaloide fue introducido por ROSENTHAL [1991], aunque gran parte del
desarrollo conceptual bésico ya habia sido hecho por JOYAL y TIERNEY [1984] y PITTS [1988] en
sus estudios de los topoi de GROTHENDIECK.
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categoria base y la composicion se hace mediante transformaciones naturales que
satisfacen criterios de coherencia. Esto se ha convertido en un concepto central en
la Teoria de Categorias y es tratado en el texto estindar [BORCEUX, 1994]; para un
tratamiento especializado, ver [KELLY, 1982] y para un desarrollo didactico, ver
[BORCEUX and STUBBE, 2000].

Al limitar la atencién a las categorias con un solo objeto, recuperamos a los
quantales, introducidos por MULVEY [1986], como generalizacién no conmutativa
de locales.'” Aqui puede mencionarse la reciente extension de las nociones locdlicas
de simplicidad y espacialidad en el contexto de quantales [KRUML, 2000; PASEKA,
1997; PASEKA and KRUML, 2000; ROSICKY, 1995], un tema tratado en detalle en
[ROSICKY and PASEKA, 2000]. Es interesante sefialar que estructuras similares tam-
bién han sido aprovechadas en Informdtica. Un ejemplo importante es la llamada
logica observacional de ABRAMSKY y VICKERS [ABRAMSKY, 1991; ABRAMSKY y
VICKERS, 1993; VICKERS, 1989]. Aqui se observa que la posibilidad de que la ob-
servacion induzca un cambio de estado, formalmente conduce a un transito de mar-
cos a quantales. Esta linea de pensamiento ha sido extendida por RESENDE [1999,
2000], que describe los sistemas generales en base a su comportamiento observable
independientemente de cualquier supuesto espacio de estado. Para una revision ge-
neral, ver [RESENDE, 2000]. Debe sefalarse, sin embargo, que estas consideraciones
son bastante diferentes de la nocion contempordnea de computacién quantica
(véase por ejemplo la teoria general de lenguajes quanticos [Gudder, 2000], es de-
cir, lenguajes aceptados por autématas quanticos).
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