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La Formula de la Integral de Cauchy

00. Introduccion. Una obtencion elemental de la formula
Dado un conjunto de caminos o trozos de curva rectificables en R, 7 j=1...k,
k
se define como cadena a la expresion ¢, = ij.y, ,conm, e Z, j=1,...,k.
=1
Llamaremos circuito " a un contorno rectificable cerrado. Una cadena se denomina
ciclo si puede representarse como suma de circuitos.

00.1 Aplicando el Teorema de la Integral de Cauchy-Goursat:
Para toda funcion analitica ¢@(Z) en un abierto simplemente conexo D, para todo

contorno cerrado rectificable o circuito I" contenido en D se verifica el teorema de

Cauchy-Goursat
J1#(2)0z=0
r

que es valido también cuando dentro del interior del recinto rodeado por [ existe
un nimero finito de puntos singulares p;, j=1,...,K tales que es

gg(z— p)4D=0, j=1..k

1
Asi, por ejemplo, la funcién ¢(Z)=—— tiene un Unico punto singular en Z=12,,

pero tal punto singular no cumple la condicién anterior, pues es
lim(z-z) =1#0
752 Z-Z,
En cambio, si f(2Z) es funcién analitica en el recinto D, se tiene que la funcién
f(2-f(z)
H)=———"—"

z-z,

si verifica dicha condicion, ya que

imz-a) %m0

y por tanto, en el recinto indicado y para el contorno cerrado rectificable [" se
verificara el teorema de Cauchy-Goursat:

foaz=fi12=1E) (1

en cambio, para la funcién @(Z) anteriormente indicada, al no cumplir la hipétesis
del teorema de Cauchy-Goursat, la integral de contorno no es nula. Calculémosla:

L fodz bzt [z(t)—;)]
dz= = =L
D?W)Z V72 iz(t)—zo at) -7




La Formula de la Integral de Cauchy Carlos S. CHINEA

llamando h(t) al resultado, se tiene

h(t) = L(—Z(t)‘zo J—) go_ 405 _,
Z(to)_;) Z(to)_%
ya que al tratarse de un recinto cerrado es Z(t)=Z{,).

Esto nos indica que €' =& =1, por lo que h(t)=27i.%,de donde

[ﬁ(p(z)dz: [ﬁ:—;zbﬂ.&‘ [2]

1 dz
donde el nimero natural 9=—_|jj depende obviamente del contorno

27l T Z-Z,
cerrado rectificable " y del punto Z,, por lo que se le acostumbra a llamar indice
del punto Z,respecto al contorno I", o bien, nimero de vueltas de [ alrededor de

Z,, pudiéndose representar por 9(1“,4) para indicar esta dependencia.

00.2. La Formula de Cauchy:

De [1]:
f(2-1(z) f(2) dz
dz= dz— f(z)[[]——=0
I el el
y usando el resultado [2]:
f(2) , 1 f(2)
——=dz- f(z)27i.9(I,z)=0— f(z)= d.
o oo (@R am2)=0o @)=l o
O sea:

El valor de la funcién holomorfa f en un punto Z, del abierto simple conexo D

puede expresarse sobre un circuito I que contenga en su interior a Z, mediante la

1 f(2)
'(z)= 27i1.9(T, z)) Eﬁ z—;)dz

formula

donde $(I', Z)) es el nimero de vueltas o indice del circuito I" alrededor de Z,.

01. Estudio detallado del problema

01.1. Precisando la idea de abierto conexo
Un conjunto conexo es un subconjunto de un espacio topoldgico que no puede ser
descrito como unién disjunta de dos conjuntos abiertos de su topologia.

Diremos que un conjunto es conexo por arcos, 0 arco conexo, si dados dos puntos
cualesquiera del conjunto existe un arco continuo que va de un punto al otro dentro
del conjunto. La conexidad por arcos implica la conexidad, aunque el reciproco no
es en general cierto.
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Si consideramos los abiertos de la topologia que son conexos, estos se
acostumbran a clasificar segin el nimero de componentes de su complemento
respecto al espacio completo.

En el caso del plano diremos que un abierto es simplemente conexo si su
complemento respecto al plano completo consta de una sola componente, esto es,
si su complemento es también conexo. Es importante precisar que se trata del
complemento respecto al plano completo pues, obviamente, el complemento de
una banda respecto al plano finito no es conexo.

Si convenimos en que todos los abiertos se encuentran en el plano finito se tiene
que, por ejemplo, el exterior de un circulo no es simplemente conexo, ya que su
complementario consiste en un disco cerrado y el punto del infinito.

Un abierto conexo que no es simplemente conexo se dira multiplemente conexo, y
se dice que tiene orden de conexidn finito n, si su complemento respecto al plano
completo consiste en n componentes, y se dird que tiene orden de conexion infinito
si su complemento tiene infinitas componentes.

Teniendo en cuenta estas precisiones se pueden probar resultados muy sencillos
sobre circuitos en un disco abierto, como el siguiente enunciado.

Teorema: En el plano R?, todo abierto conexo es también arco conexo
Demostracion:
Sea M un conexo abierto y sea M; la componente de M que es arco conexa. Si es

M, =M habremos terminado. Caso contrario, llamemos M, =M —M,. Se tiene

entonces que M=M, UM, y M,nM, =¢. Vamos a ver que tanto M; como M,

han de ser abiertos, por lo que habria contradicciéon con el hecho de que M es
abierto conexo (por definicion, un abierto conexo no puede ser descrito como unién
disjunta de dos abiertos) y por tanto, M nunca podria ser la uniéon de un conjunto
arco conexo y otro conjunto que no lo es.

- M; es abierto:

VZ, e M,c M,3B(z,d)yc M y Vw, € B(Z,d) existe un segmento que une Z
con W,y estd contenido en B(Z,d), porlo que B(z,d)c M, - M, abierto.

- M, es abierto: Del mismo modo.
En definitiva, si suponemos que el abierto conexo M es unidn disjunta de una parte
arco conexa y otra parte que no lo es, llegamos a la conclusién de que ambas
componentes son abiertos y M no podria ser abierto conexo pues quedaria descrito

por la unién disjunta de dos abiertos, salvo que M, =My M, =¢.
Luego, necesariamente, si M es abierto conexo, también es arco conexo.

Teorema: Si es [ un circuito y Z, & I' entonces se verifica que
) $(-1,%)=-9T,7).
b) Dado el disco abierto Dy I'c D, entonces $(I',Z)=0, Vz ¢ D.
¢) Si consideramos la funcién definida por el indice, (% )=9(I,Z), se tiene

que es constante en cada una de las componentes del complemento de [,
siendo cero en la componente no acotada.

Demostracioén:
t ' t 1
a) '9(_1_‘5;)): : oz = 1 I Z(t) df =— ! j Z(t) dt =

271iz-2, 27 At)-z 2715, At
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1 o)
———[-=-=-9.3)
27l T Z-Z,

b) Si Z ¢ D 1a funcién 1/2—4 es holomorfa en D, por lo que aplicando el
teorema de Cauchy:

9(C,z)=——f-% - -9
27l - z-2, 27l
c) Para el circuito ' las componentes de su complemento son abiertos conexos, y
por el anterior teorema, son también arco conexos. Dada una componente C del

complemento de T se tiene que , Va,b € C, existe pues una poligonal que une los
puntos a y b, y no corta al circuitoI". Por ello, bastara probar que $(I",a)=9(I, b)

si I' no corta al segmento L(&,b)que une los puntos a y b.
Z—a

Vze C-L(ab), la funcién definida por ¢(2)= es una aplicacién del abierto

conexo C—L(a b)en D, pues no es nula ni es negativa, siendo ademas funcién
holomorfa, y tomando su logaritmo:
Z—a

Lo(2)= L(—J

es también funcion holomorfa, lo mismo que su derivada:

(L(D(z)),:[l_(z—aﬂ_ I (z=b-(z-a)_ 1 1

z-b)] z-a  (z-by z-a z-b
z-b

por lo que se le puede aplicar el teorema de Cauchy:

fiLo(2) dz= @(L—Ljdz: %% _g(r.a)-9T.b)=0

- ~\z—a z-b ~z-a Y z-b
de lo cual $(I',a)=9(I,b). Es decir, dos puntos, a y b, cualesquiera, de una
misma componente del complemento de [ tienen el mismo indice. El indice es, por
consiguiente, constante en dicha componente. Para ver la segunda afirmacién, de
que en la componente no acotada, C’, es $(I',2)=0, Vze C', tengamos en cuenta
que al ser el circuito [ acotado, existird un disco de radio r que lo contiene, por lo
que tomando ze C' tal que r<|z| se tiene, por b), que $(I',2)=0, y como el

radio r del disco puede ser cualquiera siempre que contenga al circuito, en toda la
componente no acotada el indice sera nulo.

14
: Compoanents acatada ©
T del Complemento de T
Componente no acotada C'
_del complamento de T’
Teorema:
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Sea D un abierto del plano. Se verifica la siguiente equivalencia:
D es simplemente conexo sii para cualquier ciclo contenido en D su indice respecto
a un punto no perteneciente a D es nulo:

D simp conexo<>VZ, ¢ D,VI' c D, 3(T,Z)=0
Demostracién:
Veamos la implicacion —:
Si D es simplemente conexo, entonces el complemento D’ de D es conexo y
contiene a 0.
Por tanto, para VI — D, el complemento D’ de D estd contenido en la componente
no acotada del complemento de .
En definitiva, VZz, ¢ D es, por el apartado b) del teorema anterior, $(T,Z)=0.
Sea ahora la implicacion contraria <—:
Supongamos que D no fuera simplemente conexo, es decir que el complemento D’
de D no es conexo. En este caso veremos que se produce una contradiccion con la

hipétesis, ya que podré definirse un ciclo » en D tal que $(3, %) #0.

Efectivamente, si, por ejemplo, expresamos D’ mediante la unién disjunta de dos
conjuntos cerrados, A y B, siendo B la componente no acotada y Z, € A, sea la
distancia entre ambos d(A,B)=0. Ha de ser necesariamente d> (0, pues si fuera
0=0, no serian partes disjuntas. Vamos a ver someramente como en la zona de D
que separa ambos cerrados puede definirse un ciclo ¥ que rodea a Z, € A, con lo

que seria $(,%)2=1.

— ) | & T
.‘J_.l" ba " ..&..l_:_\_"!—l..l , _\.'ﬁ
A - R
it ; — \
! ] b | |
¥ i
n . {f=s . : } o
] M = || | -
[ | || [] [ | I|
i L2
W | I
o ] |I..|
I‘\, T :\l'\:. _:'"”:'_ P _'J:..'-:'I'".'_-l f
B

En la figura se observa que si pensamos en un recubrimiento Q de la parte A
acotada formado por cuadrados de lado /<§/\/§, de forma que el punto Z quede

en el centro de uno de los cuadrados, de modo que la frontera F(Q)esté
constituida por segmentos orientados tales que el interior de Q queda a la

izquierda. Sea el ciclo ]/=ZF(Qj), donde la suma estd extendida a todos los
J

cuadrados que tienen puntos comunes con A. Es obvio, por la eleccidon del lado de

cada cuadrado, que ¥ no tiene puntos comunes con B, y después de realizar todas
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las cancelaciones tampoco tiene puntos comunes con A. Puesto que Z, esta en el

centro de uno de los cuadrados del recubrimiento, es inmediato que $(7,Z)=1.
Asi, pues, resulta que el ciclo y esta en D y se tiene que para un

Z, ¢ D, 3(y,2))=1, lo cual contradice la hipétesis. Luego el complemento D’ de D
no puede descomponerse en una unién disjunta. Es conexo.

De lo cual inferimos que D es simplemente conexo.

01.2. Cadenas, ciclos y clases de homologia

Cadenas:

Dado un conjunto de caminos o trozos de curva rectificables en Rz, 7 j=1..,k,
k
se define como cadena a la expresién ¢, = ij.yj ,conm € Z, j=1,..,k.
j=1
Como ya hemos indicado, llamaremos circuito [ a un contorno rectificable cerrado.
Una cadena se denomina ciclo si puede representarse como suma de circuitos.

Llamaremos K al conjunto de todas las cadenas, y Cp al conjunto de todos los ciclos
de un abierto D.

K
Se define la integral de la funcidon f(z) sobre la cadena gk=ij.7/j, por la
j=1

k
expresion I f(2).dz= ijJ. f(2).0z.
Sk Jj=1 7
Dos cadenas, k y k’, que tienen la misma integral curvilinea para cualquier funcion
f(z) se dice que son cadenas idénticas.

En el conjunto K de todas las cadenas queda, por tanto, establecida una relacién de
equivalencia mediante la idea de identidad de cadenas (es una relacion reflexiva,
simétrica y transitiva), que parte al conjunto infinito de todas las cadenas del plano
en clases de equivalencia, que también denominaremos cadenas.

Es trivial que las operaciones que indicamos a continuacién no cambian la identidad
de cadenas:

- Permutacion de caminos.

- Subdividir caminos.

- Fusidn de varios caminos parciales en uno solo.

- Cambio de parametrizacion de un camino.

- Cancelacién de dos caminos opuestos.
El conjunto K de todas las cadenas del plano puede ser dotado, en definitiva, de
una adicion, que es conmutativa, asociativa, con elemento nulo y con elemento

opuesto, es decir, el conjunto (K,+) es un grupo aditivo conmutativo.
Ciclos:

Se define el indice de un punto con respecto a un ciclo I"del mismo modo que se
ha definido antes el indice de un punto con respecto a un circuito

1 dz
9T, z)=—
T %) 27i T Z—Z,

Asi, para un ciclo que sea combinacion lineal de h circuitos se tendra que
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S(Zmr,,;)) ng(rj,zo) m eZ

Jj=1 j=1

puesto que
h
9(2”",-Fj,20)= 1' {Dﬁ dz dz |_
1 Zﬁlij Z-Z, 27[[L T Z- ;) ot Z
(m) (mh)
:L[h dz + +Dﬁ dz ot — 1 Dﬁ
27| T z-7, " T Z-% 27| 1 z- z0 :
dz m az
zzﬂ[ﬁ +o L =mI[T,z)+..+mI3T,,Z)=
7l T Z-Z, 275 Z- 2,
h
=2.m3 T, z)
j=l
Homologia:

Dos ciclos de un abierto conexo D se dicen homoldgicos médulo D, si y solo si
tienen el mismo indice respecto a un punto cualquiera exterior a D:

I''=T,(mod D)<>Vwe D, $(I',w)=9(,,w)

Un ciclo del abierto conexo D se dice homoldgico a cero mddulo D, si y solo si tiene
indice nulo con respecto a cualquier punto exterior a D:

I~ 0(mod D)<> Vu ¢ D, $(T, t)=0

En la familia Cp de los ciclos del abierto conexo D se verifican trivialmente las
siguientes propiedades:

a) I' =I',(mod D) T, -T', = 0(mod D)

b) La relacién = de homologia es reflexiva, simétrica y transitiva, por lo que es una
relacion de equivalencia que parte a la familia Cp, de los ciclos del plano en clases
de equivalencia, que se denominan clases de homologia, y que representaremos
por H(D,z).

c) (C,,+) es subgrupo de (K,+) y la relacién de homologia es compatible con la

suma, por lo que (H(D, 2),+) es también un grupo abeliano.
d) Si D c D'entonces I' # O(mod D) - I" = O(mod D")

En general, la integral de una funcién cualquiera sobre un ciclo homoldgico a cero,
modulo D, no es necesariamente nula. Sin embargo, la relacion de homologia
permite probar el enunciado mas general del teorema de Cauchy, enunciado que
puede establecerse asi:

La integral de una funcion holomorfa sobre un ciclo homoldégico a cero modulo D es
nula. Dicho de otro modo, la integral de una funcion holomorfa es un invariante en
las clases de homologia de D.

01.3. Enunciado general del teorema de Cauchy:
Vamos a establecer el teorema como la existencia de un invariante de las clases de
homologia.
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Teorema:
Si la funcidn f(z) es holomorfa en el abierto conexo D, entonces

Jf@az=0

r

Para todo ciclo [' de D homoldgico a cero médulo D.
Demostracién:

A) Reemplazamos [’ por una linea poligonal o de lados verticales y horizontales tal
que sea también o ~0(mod D). Si es p la distancia de I"al complemento de D,

serd p>0. Si la ecuacién del ciclol' es z=Zt),t, <t<t, la funcién Zt) es
uniformemente continua en el intervalo cerrado [to,tl]. Determinamos o> 0 de
modo que [t—t|<S5—|At)—ZAt)<p vy dividimos [t,t] en subintervalos de
longitud menor que &.

Loa caminos parciales I, correspondientes a cada uno de estos subintervalos
tienen la propiedad de que cada [',esta contenido en un disco de radio p
totalmente contenido en D. Los extremos de I',pueden unirse dentro del disco
mediante una poligonal o;:

Sea p.dx+ q.dy=W una forma diferencial localmente exacta en D y B, la bola en la

que W es exacta. La familia B:{BX}Xer es un recubrimiento abierto de I que, por

ser compacto, admite un recubrimiento finito B'C B. Es, entonces, posible elegir

la particion de [to,tl] de forma que todo camino [';esté contenido entero en algun
elemento BX de B'. También puede conseguirse que la poligonal o;

correspondiente a I'; esté entera en B,. Por lo tanto se verificara
.[ W= | W, y llamando G:ZG, : j W= I w [3]
I; oj r o
Si f(z)es holomorfa en D, es f(Z).dz localmente exacta en D y se verificara:

f f(z).dz=f f(2).dz
r o
en particular, si Z ¢ D es l/z—;)holomorfa en D. Luego, aplicando [3] se deduce

que o ~0(mod.D).
B) Construyamos la red rectangular obtenida prolongando los segmentos verticales
y horizontales de la poligonal o . Habra algunos rectdngulos finitos R y algunos no

acotadost. Puesto que no es preciso tener en cuenta el caso trivial en que o se

reduce a un segmento vertical u horizontal, podemos suponer que hay al menos un
rectdngulo R.

Elijamos un punto Z del interior de cada R y formemos el ciclo

o, =2.,n.2).F(R)
donde la suma esta extendida a todos los rectangulos finitos; los coeficientes
n(o,z) estan perfectamente determinados, pues ningln Zpuede estar en . Es
inmediato que
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L, Sk=i
0,s ki

n(F(R),z)=

y también n(F(R),Z';)=0,VZ; € int(R;). Por tanto, se tiene, en virtud de lo
anterior, que n(c,,z)=n(c,z) y n(c,,z;)=0.Y también n(c,z';)=0, pues el
interior de F\’j'debe pertenecer a la componente no acotada del complemento de
o . Hemos probado asi que n(c—o,,%,)=0 paratodo Z =2z y Z :Z'j.

De esta propiedad deseamos deducir que o, es idéntico a o. Sea A, el lado
comun de dos rectdngulos adyacentes R y R,; elegimos la orientacién de forma
que R quede a la izquierda de A,. Supongamos que la expresién reducida de
o —o, contiene el multiplo C.A,,. Entonces el ciclo o—0,.C.F(R) no contiene a
C.A,., Y puesto que no corta al segmento L(Z,z), estos puntos han de tener el
mismo indice con respecto a este ciclo. Pero los indices respectivos son: el de Z es
0, y el de Z es -c. En definitiva, c=0.

El mismo razonamiento se aplica si A, es el lado comun de un rectédngulo finito R
y otro infinito Rj'.

Por dltimo, notemos que habiendo al menos un rectdngulo finito R es claro que

dos rectangulos infinitos no pueden tener un lado finito comun.
En suma, hemos demostrado que o —o, debe ser idénticamente cero, lo cual

significa que
o=0,=2,n0,2).F(R)

C) Probaremos ahora que los rectangulos R tales que n(o, z)# 0estan contenidos
en D. En efecto, supongamos que un punto z del rectangulo cerrado R no
estuviera en D. Entonces, como ¢ ~ (0 (mod.D)— n(c,z)=0. Pero o no corta al
segmento L(ZzZz), por consiguiente, n(c,z)=n(o,z)=0, en contradiccién con la
hipétesis de que n(o,z)#0.
Basta ahora aplicar el teorema de Cauchy a cada rectangulo R para obtener:

_[ f(z).dz=0—>j f(2). dz=j f(2).dz=0

F(R) c r
Notemos que si W= pdx+qdy es localmente exacta en D, entonces se verifica que
I W =0para todo ciclo F(R) que sea la frontera de un rectangulo contenido en
F(R

D. Por lo cual I W= 0 para todo ciclo I" de D que sea homoldgico a cero.

r
Se obtiene asi que la integral de una funciéon holomorfa en D (y en general de una
forma localmente exacta en D) es un invariante de las clases de homologia de D.

Corolario:
Si f(z) es holomorfa en el abierto simplemente conexo D, se tiene que

ff@dz=0

Para todo ciclo I" de D.
Demostracion:
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Sabemos que todo ciclo de D es homoldgico a cero médulo D. Se tiene asi que los
abiertos simplemente conexos constan de una sola clase de homologia.

01.4. Enunciado general de la formula de Cauchy:
Teorema:
Si f(z) es holomorfa en el abierto conexo D, entonces se tiene que

5(1.7).f(3) == gl f(zz)od

para todo ciclo " de D, que sea homologlco a cero modulo D y que no pase por z;.
Demostracién:
Esta es la expresion mas general de la formula de Cauchy.

La funcion
f(2-1(z)

#(2)=

es holomorfa en D'=D—{Zz}, que es un abierto conexo que contiene a I".

Si z ¢ D,entonces D'=D y serd homoldgico a cero médulo D', por lo cual,
aplicando el teorema anterior, se obtiene:

[1#2.02=0 > f(z)f|——. dz= [ﬁ 1@ s 91, 2). F(z) = [ﬁ @4,
r r -4 Z-z Z- 7,
Si z e D,sea B(z,d)cDla bola de centro enz tal que su frontera
o =F(B(z,d))c D. Entonces:
9(0,z)=1 vy 9(0,2)=0 Vz ¢ D
sea C=9(0,2). Entonces el ciclo y =I"-Coes trivialmente homolégico a cero
modulo D’ y esta contenido en D’. Luego, por el anterior teorema, es

2).dz=0—> 2).dz= 2).dz—-cl||¢(2).dz= M.dz—
fo2 1 42 Uﬁ¢<> Uﬁ¢<) Uﬁz_zo

r

f {21 gy [ﬁf(z)dz f(z, )[ﬁ o —of L (2dz+cf(zo)[ﬁ az__

s <74 -z -z —4
Pero al ser
r
sera:

[ﬁ 1@ 452 if(2)
z-7,

y, finalmente:

f(2 ,,

(T, z,). f(zo)—zi[h

10
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02. Derivadas de 6rdenes superiores
Veamos a continuacién que toda funcién holomorfa f(z) en un abierto conexo D

admite derivadas de cualquier orden.

Teorema:
Sea ¢(t) continua en el camino I'. Entonces la funcién
t
o G
r (- )

es holomorfa en el complemento de T, S|endo su derivada F' (2)=n.F_,(2).

Demostracion:
Empleamos induccién. Probemos que se verifica para n=1, para, a continuacion,
probar que si es cierta para n-1 también lo sera para n.

- Para n=1:
La continuidad:
Consideremos un punto Z, cualquiera del complemento de [' y sea d la distancia

desde Z a I', de modo que para una bola B(;);d) de centro en Z vy radiod se
tiene que es B(Z;d)NT =¢.

t—z|> d/2, asimismo |t—Z>d/2, Vze B(7;d/2),y
también es |z— z,| < d. Entonces:

6O g [ 2O gl 1] 11 )l
IF(2)-F(z) = j £t jt zodt‘_ !(t_z t_ngé(t)dt
22 e #(t) dt‘
r((t—z)(t— )jﬂ) =2 i "
4
<[zl oot

Es decir, cuando |z—;)| — 0 también |FI(Z)—F1(ZO)|—> 0. F(2) escontinuaen Z.

La derivada:

De ser Fl(z)_Fl(%): ! I(l _ j¢(t)dt: ! I =4 o(t)dt =

z-z  z-zy\t-z t-gz z-7, 1 (t-2(t-3)
= Hat
!(t— z)(t- %)¢()
Se tiene:
F'lzlimFl(z)_Fl(Z)) hm_[
2aH Z-g r(t- )( r

- Sea cierta para n-1 y comprobemos que en tal caso lo serd también para n:
La continuidad:
Puesto que es:

(t-z)" -(t-2"=(t-2)" (t-7)-(t-2"=[(t-2+(z-3)|(t-7)" - (t-2)"=

11



La Formula de la Integral de Cauchy Carlos S. CHINEA

=(t-2(t-z)" +(z-z)(t-7)" - (t-2

sera:
I 1 (=) (-2 _(t-2(-3)"  (t-2
(t-2" (t-z)" (t-z)"(t-2" (t-z)"(t-2" (t-z)"(t-2"
~ (t-z)" _ 1 1 _ 1
TR e i e v el CA ey
Por tanto:
¢(t> i, ( 1 ] .

F.(2-F = Bt =
(- F(z)= I J(t 7 I(t 2y PO

40
Hdt+ —dt
ILt (-2 (- zo> }’() e Z‘))j(t Z)(t-2

observamos que cuando z— Z, la primera integral tiende a cero, y puesto que
Z—Z, estd acotado en un entorno de Z, también tiende a cero la segunda. F (2) es
continua en z,.

La derivada: ~
Fo=tim2@=5&) i, 1 S n}p(t)dn
ma o Z-g, =4 Z-7 LE-7)(t-2" (I-7)

PO i ! j¢<t>/f;f0_¢<f>/f—jo}m+
trRa e L 3)
m[ PO
Nz
:f'n—l(zo)—l_Fm-l(Z)) (n l)f(%)—i_ +1(ZO)

HO
_Lfn@- ,,1<zo>]+I(t_)

O sea:
F'.(z)=(n-1)1(z)+F,.(z) [4]
donde se ha llamado
¢(t)/ l‘ _
I (t— - fn—l(%)
es decir, f(z)= [ &2 W)/ - I W) ot=F,.(z)

r (-3

Por lo que, sustituyendo en [4], se obtlene finalmente:
F'.(z)=(n-DF,(%)+F,.(%)=nF,,(%)
(Habiendo utilizado la hipétesis de induccién para n-1: f' _(Z)=(n-1)f(z))

Corolario (Formula de la integral de Cauchy para la derivada n-sima):

Toda funcién holomorfa f(Z) en un abierto conexo D admite derivadas de cualquier
orden que son también holomorfas.

Para cualquier punto ze D,y para cualquier ciclo I" homolégico a cero médulo D,
tal que (I, 2) # 0 se verifica que
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n)( )_ n! [ﬁ f(t)

2729, 2) ¢ (t-2)™
En efecto:
Si llamamos f,(2)=— ! [h f(t)kdt, k=1,...,n,...
27i3(T,2) - (t—2)

se tiene, partiendo de la férmula de Cauchy:

(@=1@= T z)[ﬁ et

F@=1@=1.=5 i.91(F Z)[ﬁ(tf_(tz)) ot

rEa=h@ 2@ /9(r z)[h(tf(tz))

[ f(H) g
27 s(r 2)"(t- z)

f"(2)=(2.£(2)'=2.3.1,(2)=

n) . . 23...n f(t)
f?(2=2...n—1. f(Z)) 2.3..nf l( 2)= 279 (T.2) J (t—z)”“
En definitiva:
n) n! f(t)
(2= 27i (T, Z)m(t 2™ o ]

03. Los teoremas de Morera y Liouville

Teorema de Morera:
Si f(2) esta definida y es continua en el abierto conexo D, si es

Jf@az=0
r
para todo ciclo T" de D, entonces f(Z)es holomorfa en D.

Demostracion:
Si la funcién dada es continua en D y para todo ciclo de D la integral de contorno es

nula, esto implica que admite una primitiva F(2) tal que F'(2)= f(2), por lo que
F(2) es holomorfa en D, y por el dltimo corolario, también F'(Z) es holomorfa,
luego f(z)es holomorfa en D.

Teorema de Liouville:
Una funcidon holomorfa y acotada en todo el plano debe reducirse a una constante.
Demostracion:
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Si en la férmula [5] consideramos z=Z € D y tomamos como ciclo la frontera de
la bola con centro en dicho punto, I' = F(B(Z;r)) c D, obtenemos en el supuesto
f(t)| <M, que

que f(2) seaacotada,
‘f”)(zo)‘ < n% Ml2ﬂir8 =n!.M.r" (Desigualdad de Cauchy)
27id r*
Si hacemos en la desigualdad n=1 y para r—> o0, sera |f'(zo)|£M.r" =0lo que

implica que f'(z)=0,y por tanto, f(z)=const.

Una aplicacion interesante del teorema de Liouville es el poder disefiar una
demostracion bastante simple del teorema fundamental del algebra:

Sea p(2) un polinomio de grado mayor que cero. Si no tuviera raices en C,
entonces la funcion inversa, l/p(;)), seria holomorfa en todo el plano, y ademas, al

ser lim(1/p(z,))=0, seria, ademas, acotada, por lo que al aplicar el teorema de
Z—>0

Liouville habriamos de deducir que es una constante. Como esto no es lo que
ocurre, se deduce que ha de tener al menos una raiz en C. Si simplificamos el
polinomio eliminando la raiz podemos continuar el razonamiento con cada
polinomio restante, con lo cual llegamos a la conclusién que ha de tener tantas
raices como indique su grado.
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