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La Formula de la Integral de Cauchy 
 
 
 
 
 
 
 

00. Introducción. Una obtención elemental de la fórmula 

Dado un conjunto de caminos o trozos de curva rectificables en R2
, γ j , j =1,...,k , se define como cadena a la expresión ς k = mj .γ j

j=1

k

∑ , con mj ∈ Z, j =1,...,k . 

Llamaremos circuito Γ  a un contorno rectificable cerrado. Una cadena se denomina 
ciclo si puede representarse como suma de circuitos. 
 
 
       00.1 Aplicando el Teorema de la Integral de Cauchy-Goursat: 
Para toda función analítica φ(z)  en un abierto simplemente conexo D, para todo 

contorno cerrado rectificable o circuito Γ  contenido en D se verifica el teorema de 
Cauchy-Goursat 

φ(z)
Γ
∫ dz= 0  

que es  válido también cuando dentro del interior del recinto rodeado por Γ  existe 
un número finito de puntos singulares pj , j =1,...,k  tales que es 

lim
z→pj

z− pj( )φ(z) = 0, j =1,...,k 

Así, por ejemplo, la función ϕ(z) = 1
z− z0

 tiene un único punto singular en z= z0 , 

pero tal punto singular no cumple la condición anterior, pues es  

lim
z→z0

z− z0( ) 1
z− z0

=1≠ 0 

En cambio, si f (z)  es función analítica en el recinto D, se tiene que la función 

φ(z) = f (z)− f (z0 )
z− z0

 si verifica dicha condición, ya que  

lim
z→z0

z− z0( ) f (z)− f (z0 )
z− z0

= 0  

y por tanto, en el recinto indicado y para el contorno cerrado rectificable Γ  se 
verificará el teorema de Cauchy-Goursat: 
 

                            

φ(z)
Γ
∫ dz= f (z)− f (z0 )

z− z0Γ
∫ = 0

                           
[1] 

 
en cambio, para la función ϕ(z) anteriormente indicada, al no cumplir la hipótesis 
del teorema de Cauchy-Goursat, la integral de contorno no es nula. Calculémosla: 

ϕ(z)dz
Γ
∫ = dz

z− z0Γ
∫ = z'(t).dt

z(t)− z0t0

t

∫ = L z(t)− z0

z(t0 )− z0









 
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llamando h(t) al resultado, se tiene 

h(t)= L z(t)− z0

z(t0 )− z0









→ eh(t ) = z(t)− z0

z(t0 )− z0

=1 

ya que al tratarse de un recinto cerrado es z(t) = z(t0 ) . 

 

Esto nos indica que eh(t ) = e2π i.ϑ =1, por lo que h(t) = 2π i.ϑ , de donde  
                                               ϕ(z)dz

Γ
∫ = dz

z− z0Γ
∫ = 2π i.ϑ                                 [2] 

donde el número natural ϑ = 1
2π i

dz
z− z0Γ
∫  depende obviamente del contorno 

cerrado rectificable Γ   y del punto z0 , por lo que se le acostumbra a llamar índice 

del punto z0 respecto al contorno Γ , o bien, número de vueltas de Γ  alrededor de 

z0 , pudiéndose representar por ϑ (Γ, z0 ) para indicar esta dependencia. 
 
       00.2. La Formula de Cauchy: 
De [1]: 

f (z)− f (z0 )
z− z0Γ

∫ dz= f (z)
z− z0Γ
∫ dz− f (z0 ) dz

z− z0Γ
∫ = 0  

y usando el resultado [2]: 
f (z)
z− z0Γ
∫ dz− f (z0 )2π i.ϑ (Γ,z0 ) = 0→ f (z0 ) = 1

2π i.ϑ (Γ, z0 )
f (z)
z− z0Γ
∫ dz 

O sea: 
El valor de la función holomorfa f en un punto z0  del abierto simple conexo D 

puede expresarse sobre un circuito Γ  que contenga en su interior a z0  mediante la 

fórmula 

f (z0 ) = 1
2π i.ϑ (Γ, z0 )

f (z)
z− z0Γ
∫ dz 

 
donde ϑ (Γ, z0 ) es el número de vueltas o índice del circuito Γ  alrededor de z0 . 
 
 
 
 
 
 
 
 
01. Estudio detallado del problema  
 

01.1. Precisando la idea de abierto conexo 
Un conjunto conexo es un subconjunto de un espacio topológico que no puede ser 
descrito como unión disjunta de dos conjuntos abiertos de su topología.  
 
Diremos que un conjunto es conexo por arcos, o arco conexo, si dados  dos puntos 
cualesquiera del conjunto existe un arco continuo que va de un punto al otro dentro 
del conjunto. La conexidad por arcos implica la conexidad, aunque el recíproco no 
es en general cierto. 
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Si consideramos los abiertos de la topología que son conexos, estos se 
acostumbran a clasificar según el número de componentes de su complemento 
respecto al espacio completo. 
 
En el caso del plano diremos que un abierto es simplemente conexo si su 
complemento respecto al plano completo consta de una sola componente, esto es, 
si su complemento es también conexo. Es importante precisar que se trata del 
complemento respecto al plano completo pues, obviamente, el complemento de 
una banda respecto al plano finito no es conexo. 
 
Si convenimos en que todos los abiertos se encuentran en el plano finito se tiene 
que, por ejemplo, el exterior de un círculo no es simplemente conexo, ya que su 
complementario consiste en un disco cerrado y el punto del infinito. 
 
Un abierto conexo que no es simplemente conexo se dirá múltiplemente conexo, y 
se dice que tiene orden de conexión finito n, si su complemento respecto al plano 
completo consiste en n componentes, y se dirá que tiene orden de conexión infinito 
si su complemento tiene infinitas componentes. 
 
Teniendo en cuenta estas precisiones se pueden probar resultados muy sencillos 
sobre circuitos en un disco abierto, como el siguiente enunciado. 
 
Teorema: En el plano R2, todo abierto conexo es también arco conexo 
Demostración: 
Sea M un conexo abierto y sea M1 la componente de M que es arco conexa. Si es 
M1 =M  habremos terminado. Caso contrario, llamemos M2 =M −M1 . Se tiene 

entonces que M =M1∪M2 y M1∩M2 =φ . Vamos a ver que tanto M1 como M2 
han de ser abiertos, por lo que habría contradicción con el hecho de que M es 
abierto conexo (por definición, un abierto conexo no puede ser descrito como unión 
disjunta de dos abiertos) y por tanto, M nunca podría ser la unión de un conjunto 
arco conexo y otro conjunto que no lo es. 

- M1 es abierto: 
∀z0 ∈ M1 ⊂ M, ∃B(z0,d)⊆ M  y ∀w0 ∈ B(z0,d)  existe un segmento que une z0  con w0 y está contenido en B(z0,d), por lo que B(z0,d)⊆M1 →M1abierto. 

- M2 es abierto: Del mismo modo. 
En definitiva, si suponemos que el abierto conexo M es unión disjunta de una parte 
arco conexa y otra parte que no lo es, llegamos a la conclusión de que ambas 
componentes son abiertos y M no podría ser abierto conexo pues quedaría descrito 
por la unión disjunta de dos abiertos, salvo que M1 =M y M2 =φ . 
Luego, necesariamente, si M es abierto conexo, también es arco conexo. 
 

Teorema: Si es Γ  un circuito y z0 ∉ Γ  entonces se verifica que 

a) ϑ (−Γ,z0 ) = −ϑ (Γ, z0 ).  
b) Dado el disco abierto D y Γ ⊂ D , entonces ϑ (Γ, z0 ) = 0 , ∀z0 ∉ D. 

c) Si consideramos la función definida por el índice, γ (z0 ) =ϑ (Γ,z0 ), se tiene 

que es constante en cada una de las componentes del complemento de Γ , 
siendo cero en la componente no acotada. 

Demostración: 

a) ϑ (−Γ,z0 ) = 1
2π i

dz
z− z0−Γ
∫ = 1

2π i
z'(t)
z(t)− z0t1

t0

∫ dt = − 1
2π i

z'(t)
z(t)− z0t0

t1

∫ dt =  
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                      = −
1

2π i
dz
z− z0Γ
∫ = −ϑ (Γ, z0 ) 

b) Si z0 ∉ D  la función 1 z− z0  es holomorfa  en D, por lo que aplicando el 

teorema de  Cauchy: 

ϑ (Γ, z0 )= 1
2π i

dz
z− z0Γ
∫ = 1

2π i
.0 = 0  

c) Para el circuito Γ  las componentes de su complemento son abiertos conexos, y 
por el anterior teorema, son también arco conexos. Dada una componente C del 
complemento de Γ  se tiene que , ∀a,b∈C, existe pues una poligonal que une los 

puntos a y b, y no corta al circuitoΓ . Por ello, bastará probar que ϑ (Γ,a) =ϑ (Γ,b) 
si Γ  no corta al segmento L(a,b)que une los puntos a y b. 

∀z∈C− L(a,b), la función definida por ϕ(z) = z−a
z−b

 es una aplicación del abierto 

conexo C− L(a,b)en D, pues no es nula ni es negativa, siendo además función 
holomorfa, y tomando su logaritmo: 

Lϕ(z) = L z− a
z−b







  

es también función holomorfa, lo mismo que su derivada: 

(Lϕ(z))' = L z−a
z−b



















'

= 1
z−a
z−b

. (z−b)− (z−a)
(z−b)2 = 1

z−a
− 1
z−b

 

por lo que se le puede aplicar el teorema de Cauchy: 

(Lϕ(z))'dz= 1
z−a

− 1
z−b









Γ
∫

Γ
∫ dz= dz

z−aΓ
∫ − dz

z−b
=

Γ
∫ ϑ (Γ,a)−ϑ (Γ,b) = 0  

de lo cual ϑ (Γ,a) =ϑ (Γ,b). Es decir, dos puntos, a y b, cualesquiera, de una 

misma componente del complemento de Γ  tienen el mismo índice. El índice es, por 
consiguiente, constante en dicha componente. Para ver la segunda afirmación, de 
que en la componente no acotada, C’, es ϑ (Γ,z) = 0, ∀z∈C ' , tengamos en cuenta 

que al ser el circuito Γ  acotado, existirá un disco de radio r que lo contiene, por lo 
que tomando z∈C '  tal que r < z  se tiene, por b), que ϑ (Γ, z) = 0, y como el 

radio r del disco puede ser cualquiera siempre que contenga al circuito, en toda la 
componente no acotada el índice será nulo. 

 
Teorema: 
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Sea D un abierto del plano. Se verifica la siguiente equivalencia: 
D es simplemente conexo sii para cualquier ciclo contenido en D su índice respecto 
a un punto no perteneciente a D es nulo: 
 

D simpconexo↔∀z0 ∉ D, ∀Γ ⊂ D,ϑ (T, z0 ) = 0 

Demostración: 
Veamos la implicación →: 
Si D es simplemente conexo, entonces el complemento D’ de D es conexo y 
contiene a ∞. 
Por tanto, para ∀Γ ⊂ D, el complemento D’ de D está contenido en la componente 
no acotada del complemento de Γ . 

En definitiva, ∀z0 ∉ D es, por el apartado b) del teorema anterior, ϑ (T,z0 ) = 0 . 

Sea ahora la implicación contraria ←: 
Supongamos que D no fuera simplemente conexo, es decir que el complemento D’ 
de D no es conexo. En este caso veremos que se produce una contradicción con la 
hipótesis, ya que podrá definirse un ciclo γ  en D tal que ϑ (γ, z0 ) ≠ 0 . 

Efectivamente, si, por ejemplo, expresamos D’ mediante la unión disjunta de dos 
conjuntos cerrados, A y B, siendo B la componente no acotada y z0 ∈ A, sea la 

distancia entre ambos d(A,B) =δ . Ha de ser necesariamente δ > 0, pues si fuera 

δ = 0, no serían partes disjuntas. Vamos a ver someramente como en la zona de D 
que separa ambos cerrados puede definirse un ciclo γ  que rodea a  z0 ∈ A, con lo 

que sería ϑ (γ, z0 ) ≥1. 

 
 
En la figura se observa que si pensamos en un recubrimiento Q de la parte A 

acotada formado por cuadrados de lado l <δ 2 , de forma que el punto z0 quede 

en el centro de uno de los cuadrados,  de modo que la frontera F(Q)esté 
constituida por segmentos orientados tales que el interior de Q queda a la 

izquierda. Sea el ciclo γ = F(Qj )
j
∑ , donde la suma está extendida a todos los 

cuadrados que tienen puntos comunes con A. Es obvio, por la elección del lado de 
cada cuadrado, que γ  no tiene puntos comunes con B, y después de realizar todas 
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las cancelaciones tampoco tiene puntos comunes con A. Puesto que z0  está en el 

centro de uno de los cuadrados del recubrimiento, es inmediato que ϑ (γ, z0 ) =1. 

Así, pues, resulta que el ciclo γ  está en D y se tiene que para un 

z0 ∉ D,ϑ (γ, z0 ) =1, lo cual contradice la hipótesis. Luego el complemento D’ de D 

no puede descomponerse en una unión disjunta. Es conexo. 
 
De lo cual inferimos que D es simplemente conexo. 
 
 

01.2. Cadenas, ciclos y clases de homología 
 
Cadenas: 

Dado un conjunto de caminos o trozos de curva rectificables en R2
, γ j , j =1,...,k , se define como cadena a la expresión ς k = mj .γ j

j=1

k

∑ , con mj ∈ Z, j =1,...,k . 

Como ya hemos indicado, llamaremos circuito Γ  a un contorno rectificable cerrado. 
Una cadena se denomina ciclo si puede representarse como suma de circuitos. 
 
Llamaremos K al conjunto de todas las cadenas, y CD al conjunto de todos los ciclos 
de un abierto D. 

Se define la integral de la función f(z) sobre la cadena ς k = mj .γ j
j=1

k

∑ , por la 

expresión f (z).dz
ςk

∫ = mj f (z).dz
γ j

∫
j=1

k

∑ . 

Dos cadenas, k y k’, que tienen la misma integral curvilínea para cualquier función 
f(z) se dice que son cadenas idénticas. 
 
En el conjunto K de todas las cadenas queda, por tanto, establecida una relación de 
equivalencia mediante la idea de identidad de cadenas (es una relación reflexiva, 
simétrica y transitiva), que parte al conjunto infinito de todas las cadenas del plano 
en clases de equivalencia, que también denominaremos cadenas. 
 
Es trivial que las operaciones que indicamos a continuación no cambian la identidad 
de cadenas: 

- Permutación de caminos. 
- Subdividir caminos. 
- Fusión de varios caminos parciales en uno solo. 
- Cambio de parametrización de un camino. 
- Cancelación de dos caminos opuestos. 

El conjunto K de todas las cadenas del plano puede ser dotado, en definitiva, de 
una adición, que es conmutativa, asociativa, con elemento nulo y con elemento 
opuesto, es decir, el conjunto (K,+)  es un grupo aditivo conmutativo. 
Ciclos: 
Se define el índice de un punto con respecto a un ciclo Γdel mismo modo que se 
ha definido antes el índice de un punto con respecto a un circuito 

ϑ (Γ, z0 ) = 1
2π i

dz
z− z0Γ
∫  

Así, para un ciclo que sea combinación lineal de h circuitos se tendrá que 
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ϑ ( mjΓ j , z0 ) = mjϑ (Γ j ,z0 )
j=1

h

∑
j=1

h

∑ , mj ∈ Z  

puesto que 

ϑ ( mjΓ j , z0 ) =
j=1

h

∑ 1
2π i

dz
z− z0

mjTj
j=1

h

∑
∫ = 1

2π i
dz
z− z0m1T1

∫ +...+ dz
z− z0mhTh

∫











= 

= 1
2π i

dz
z− z0T1

∫ +
(m1)

... + dz
z− z0T1

∫











+ ...+ 1

2π i
dz
z− z0Th

∫ +
(mh )

... + dz
z− z0Th

∫











= 

= m1

2π i
dz
z− z0T1

∫ +...+ mh
2π i

dz
z− z0Th

∫ =m1ϑ (Γ1,z0 )+...+mhϑ (Γh,z0 )=  

= mj
j=1

h

∑ ϑ (Γ j , z0 ) 

Homología: 
Dos ciclos de un abierto conexo D se dicen homológicos módulo D, si y solo si 
tienen el mismo índice respecto a un punto cualquiera exterior a D: 
 

Γ1 ≈ Γ2 (mod D)↔∀w∉ D,ϑ (Γ1,w) =ϑ (Γ2,w) 
 
Un ciclo del abierto conexo D se dice homológico a cero módulo D, si y solo si tiene 
índice nulo con respecto a cualquier punto exterior a D: 
 

Γ ≈ 0(mod D)↔∀u∉ D,ϑ (Γ,u) = 0 
 
En la familia CD de los ciclos del abierto conexo D se verifican trivialmente las 
siguientes propiedades: 
a) Γ1 ≈ Γ2 (mod D)↔Γ1 −Γ2 ≈ 0(mod D) 
b) La relación ≈  de homología es reflexiva, simétrica y transitiva, por lo que es una 
relación de equivalencia que parte a la familia CD de los ciclos del plano en clases 
de equivalencia, que se denominan clases de homología, y que representaremos 
por H(D,z).  
c) (CD,+)  es subgrupo de (K,+)  y la relación de homología es compatible con la 

suma, por lo que (H (D,z),+) es también un grupo abeliano. 

d) Si D ⊆ D 'entonces Γ ≈ 0(mod D)→Γ ≈ 0(mod D ') 
 
En general, la integral de una función cualquiera sobre un ciclo homológico a cero, 
modulo D, no es necesariamente nula. Sin embargo, la relación de homología 
permite probar el enunciado más general del teorema de Cauchy, enunciado que 
puede establecerse así: 
 
La integral de una función holomorfa sobre un ciclo homológico a cero modulo D es 
nula. Dicho de otro modo, la integral de una función holomorfa es un invariante en 
las clases de homología de D. 
 
 

01.3. Enunciado general del teorema de Cauchy: 
Vamos a establecer el teorema como la existencia de un invariante de las clases de 
homología.  
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Teorema: 
Si la función f(z) es holomorfa en el abierto conexo D, entonces 
 

f (z)dz
Γ
∫ = 0  

 
Para todo ciclo Γ  de D homológico a cero módulo D. 
Demostración: 
A) Reemplazamos Γ  por una línea poligonal σ de lados verticales y horizontales tal 
que sea también σ ≈ 0(mod D). Si es ρ  la distancia de Γal complemento de D, 

será ρ > 0 . Si la ecuación del cicloΓ  es z= z(t), t0 ≤ t ≤ t1,  la función z(t)  es 

uniformemente continua en el intervalo cerrado t0, t1[ ] . Determinamos δ > 0 de 

modo que t − t ' <δ → z(t)− z(t ') < ρ  y dividimos t0, t1[ ]  en subintervalos de 

longitud menor que δ . 
Loa caminos parciales Γi  correspondientes a cada uno de estos subintervalos 

tienen la propiedad de que cada Γi está contenido en un disco de radio ρ  

totalmente contenido en D. Los extremos de Γi pueden unirse dentro del disco 

mediante una poligonal σ i : 

Sea p.dx+q.dy=W  una forma diferencial localmente exacta en D y Bx la bola en la 

que W es exacta. La familiaB= Bx{ }x∈r  es un recubrimiento abierto de Γ  que, por 

ser compacto, admite un recubrimiento finito B'⊆ B. Es, entonces, posible elegir 

la partición de t0, t1[ ]  de forma que todo camino Γi esté contenido entero en algún 

elemento Bx  de B' . También puede conseguirse que la poligonal σ i  

correspondiente a Γi  esté entera en Bx . Por lo tanto se verificará 

W
Γi

∫ = W
σ i

∫ , y llamando σ = σ i :∑ W
Γ
∫ = W

σ
∫                    [3] 

Si f (z)es holomorfa en D, es f (z).dz localmente exacta en D y se verificará: 
 

f (z).dz
Γ
∫ = f (z).dz

σ
∫  

en particular, si z0 ∉ D  es 1 z− z0 holomorfa en D. Luego, aplicando [3] se deduce 

que σ ≈ 0 (mod.D) . 
B) Construyamos la red rectangular obtenida prolongando los segmentos verticales 
y horizontales de la poligonal σ . Habrá algunos rectángulos finitos Ri  y algunos no 

acotadosRj
' . Puesto que no es preciso tener en cuenta el caso trivial en que σ  se 

reduce a un segmento vertical u horizontal, podemos suponer que hay al menos un 
rectánguloRi . 
Elijamos un punto zi  del interior de cada Ri  y formemos el ciclo 

σ 0 = n(
i∑ σ , zi ).F(Ri )  

donde la suma está extendida a todos los rectángulos finitos; los coeficientes 
n(σ , zi ) están perfectamente determinados, pues ningún zi puede estar en σ . Es 

inmediato que 
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n(F(Ri ), zk ) =
1, si k = i
0, si k ≠ i






 

y también n(F(Ri ),z' j ) = 0, ∀z' j ∈ int(R' j ). Por tanto, se tiene, en virtud de lo 

anterior, que n(σ 0, zi )= n(σ , zi ) y n(σ 0,z' j ) = 0 . Y también n(σ , z' j ) = 0 , pues el 

interior de Rj 'debe pertenecer a la componente no acotada del complemento de 

σ . Hemos probado así que n(σ −σ 0,z0 ) = 0  para todo z0 = zi  y z0 = z' j . 
De esta propiedad deseamos deducir que σ 0  es idéntico a σ . Sea Λ ik  el lado 

común de dos rectángulos adyacentes Ri  y Rk ; elegimos la orientación de forma 

que Ri  quede a la izquierda de Λ ik . Supongamos que la expresión reducida de 

σ −σ 0  contiene el múltiplo c.Λ ik . Entonces el ciclo σ −σ 0.c.F(Ri ) no contiene a 

c.Λ ik , y puesto que no corta al segmento L(zi, zk ) , estos puntos han de tener el 

mismo índice con respecto a este ciclo. Pero los índices respectivos son: el de zk es 

0, y el de zi  es –c. En definitiva, c=0. 

El mismo razonamiento se aplica si Λ ik  es el lado común de un rectángulo finito Ri  
y otro infinitoRj '. 
Por último, notemos que habiendo al menos un rectángulo finito Ri  es claro que 

dos rectángulos infinitos no pueden tener un lado finito común. 
En suma, hemos demostrado que σ −σ 0  debe ser idénticamente cero, lo cual 

significa que 

σ =σ 0 = n(
i∑ σ ,zi ).F(Ri ) 

C) Probaremos ahora que los rectángulos Ri  tales que n(σ , zi ) ≠ 0están contenidos 

en D. En efecto, supongamos que un punto z del rectángulo cerrado Ri  no 

estuviera en D. Entonces, como σ ≈ 0 (mod.D)→ n(σ , z) = 0 . Pero σ  no corta al 

segmento L(z, zi ), por consiguiente, n(σ , zi ) = n(σ , z) = 0 , en contradicción con la 

hipótesis de que n(σ , zi ) ≠ 0 . 

Basta ahora aplicar el teorema de Cauchy a cada rectángulo Ri  para obtener: 

f (z).dz
F (Ri )
∫ = 0→ f (z).dz

σ
∫ = f (z).dz= 0

Γ
∫  

Notemos que si W = pdx+qdy es localmente exacta en D, entonces se verifica que 

W
F (R)
∫ = 0para todo ciclo F(R) que sea la frontera de un rectángulo contenido en 

D. Por lo cual W
Γ
∫ = 0 para todo ciclo Γ  de D que sea homológico a cero. 

Se obtiene así que la integral de una función holomorfa en D (y en general de una 
forma localmente exacta en D) es un invariante de las clases de homología de D. 

 
Corolario: 
Si f(z) es holomorfa en el abierto simplemente conexo D, se tiene que 
 

f (z)dz
Γ
∫ = 0  

Para todo ciclo Γ  de D. 
Demostración: 
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Sabemos que todo ciclo de D es homológico a cero módulo D. Se tiene así que los 
abiertos simplemente conexos constan de una sola clase de homología. 
 
 
           01.4. Enunciado general de la fórmula de Cauchy: 
Teorema: 
Si f(z) es holomorfa en el abierto conexo D, entonces se tiene que 

ϑ (Γ,z0 ). f (z0 ) = 1
2π i

f (z)
z− z0Γ
∫ dz 

para todo ciclo Γ  de D, que sea homológico a cero módulo D y que no pase por z0. 
Demostración: 
Esta es la expresión más general de la fórmula de Cauchy. 
La función 

φ(z) = f (z)− f (z0 )
z− z0

 

es holomorfa en D ' = D− z0{ }, que es un abierto conexo que contiene a Γ .  

Si z0 ∉ D, entonces D ' = D  y será homológico a cero módulo D’, por lo cual, 

aplicando el teorema anterior, se obtiene: 

φ(z).dz
Γ
∫ = 0→ f (z0 ) 1

z− z0

.dz
Γ
∫ = f (z)

z− z0Γ
∫ dz→ϑ (Γ, z0 ). f (z0 ) = 1

2π i
f (z)
z− z0Γ
∫ dz 

 
Si z0 ∈ D, sea B(z0,d)⊆ D la bola de centro en z0  tal que su frontera 

σ = F B(z0,d)( ) ⊆ D . Entonces: 

ϑ (σ , z0 ) =1   y   ϑ (σ , zk ) = 0 ∀zk ∉ D  

sea c=ϑ (σ , z0 ) . Entonces el ciclo χ = Γ− c.σ es trivialmente homológico a cero 

módulo D’ y está contenido en D’. Luego, por el anterior teorema, es 

φ(z).dz
χ
∫ = 0→ φ(z).dz

Γ−cσ
∫ = φ(z).dz

Γ
∫ − c φ(z).dz

σ
∫ = f (z)− f (z0 )

z− z0

.dz
Γ
∫ −  

−c f (z)− f (z0 )
z− z0

.dz
σ
∫ = f (z)

z− z0Γ
∫ dz− f (z0 ) dz

z− z0Γ
∫ −c f (z)

z− z0σ
∫ dz+ cf (z0 ) dz

z− z0σ
∫ = 0  

Pero al ser 

cf (z0 ) dz
z− z0σ
∫ = f (z0 ) dz

z− z0Γ
∫  

será: 
f (z)
z− z0σ
∫ dz= 2π if (z0 )  

y, finalmente: 

ϑ (Γ,z0 ). f (z0 ) = 1
2π i

f (z)
z− z0Γ
∫ dz 
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02. Derivadas de órdenes superiores 
Veamos a continuación que toda función holomorfa f (z) en un abierto conexo D 
admite derivadas de cualquier orden. 
 
Teorema: 
Sea φ(t) continua en el camino Γ. Entonces la función 

Fn(z) =
φ(t)

(t − z)nΓ
∫ dt  

es holomorfa en el complemento de Γ, siendo su derivada F 'n(z) = n.Fn+1(z). 
Demostración: 
Empleamos inducción. Probemos que se verifica para n=1, para, a continuación, 
probar que si es cierta para n-1 también lo será para n. 
 

- Para n=1: 
La continuidad: 

Consideremos un punto z0  cualquiera del complemento de Γ  y sea d  la distancia 

desde z0  a Γ, de modo que para una bola B(z0;d) de centro en z0  y radiod  se 

tiene que es  B(z0;d)∩Γ =φ . Será entonces ∀t ∈ Γ, t − z0 > d 2 , asimismo t − z > d 2, ∀z∈ B(z0;d 2) , y también es z− z0 < d. Entonces: 
F1(z)−F1(z0 ) = φ(t)

t − z
dt

Γ
∫ − φ(t)

t − z0

dt
Γ
∫ = 1

t − z
− 1
t − z0









φ(t)dt

Γ
∫ = 

= z− z0

(t − z)(t − z0 )









φ(t)dt

Γ
∫ = (z− z0 ) φ(t)

(t − z)(t − z0 )
dt

Γ
∫ < 

< z− z0
φ(t)

(t − z)(t − z0 )
dt

Γ
∫ < z− z0

4
d2 φ(t)

Γ
∫ dt  

Es decir, cuando z− z0 → 0  también F1(z)−F1(z0 ) → 0. F1(z)  es continua en z0 . 
 

La derivada: 

De ser 
F1(z)−F1(z0 )
z− z0

= 1
z− z0

1
t − z

− 1
t − z0









φ(t)

Γ
∫ dt = 1

z− z0

z− z0

(t − z)(t − z0 )
φ(t)

Γ
∫ dt = 

= 1
(t − z)(t − z0 )

φ(t)
Γ
∫ dt  

Se tiene: 

F '1 = lim
z→z0

F1(z)−F1(z0 )
z− z0

= lim
z→z0

1
(t − z)(t − z0 )

φ(t)
Γ
∫ dt = 1

(t − z0 )2 φ(t)
Γ
∫ dt = F2 

 
- Sea cierta para n-1 y comprobemos que en tal caso lo será también para n: 

La continuidad: 
Puesto que es: 

(t − z0 )n − (t − z)n = (t − z0 )n−1(t − z0 )− (t − z)n = (t − z)+ (z− z0 )[ ](t − z0 )n−1 − (t − z)n =  
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= (t − z)(t − z0 )n−1 + (z− z0 )(t − z0 )n−1 − (t − z)n 
será: 

1
(t − z)n

− 1
(t − z0 )n

= (t − z0 )n − (t − z)n

(t − z0 )n(t − z)n
= (t − z)(t − z0 )n−1

(t − z0 )n(t − z)n
− (t − z)n

(t − z0 )n(t − z)n
+  

+(z− z0 ) (t − z0 )n−1

(t − z0 )n(t − z)n
= 1

(t − z0 )(t − z)n−1 −
1

(t − z0 )n
+ (z− z0 ) 1

(t − z0 )(t − z)n
 

Por tanto: 

Fn(z)−Fn(z0 ) = φ(t)
(t − z)nΓ
∫ dt − φ(t)

(t − z0 )nΓ
∫ dt = 1

(t − z)n
− 1

(t − z0 )n








φ(t)

Γ
∫ dt =  

= 1
(t − z0 )(t − z)n−1 −

1
(t − z0 )n











Γ
∫ φ(t)dt + (z− z0 ) φ(t)

(t − z0 )(t − z)nΓ
∫ dt  

 
observamos que cuando z→ z0  la primera integral tiende a cero, y puesto que 
z− z0  está acotado en un entorno de z0 , también tiende a cero la segunda. Fn(z)  es continua en z0 . 

 
La derivada: 

F 'n = lim
z→z0

Fn(z)−Fn(z0 )
z− z0

= lim
z→z0

1
z− z0

1
(t − z0 )(t − z)n−1 −

1
(t − z0 )n











Γ
∫ φ(t)dt +  

+ lim
z→z0

φ(t)
(t − z0 )(t − z)nΓ
∫ dt = lim

z→z0

1
z− z0

φ(t) t − z0

(t − z)n−1 − φ(t) t − z0

(t − z0 )n−1











Γ
∫ dt + 

+ lim
z→z0

φ(t)
(t − z0 )(t − z)nΓ
∫ dt = lim

z→z0

1
z− z0

fn−1(z)− fn−1(z0 )[ ] + φ(t)
(t − z0 )n+1

Γ
∫ dt =  

= f 'n−1(z0 )+Fn+1(z0 ) = (n−1) fn(z0 )+Fn+1(z0 )  O sea:                      F 'n(z0 )= (n−1) fn(z0 )+Fn+1(z0 )                [4] 
donde se ha llamado 

φ(t) t − z0

(t − z0 )n−1
Γ
∫ dt = fn−1(z0 )  

Es decir, fn(z0 ) = φ(t) t − z0

(t − z0 )nΓ
∫ dt = φ(t)

(t − z0 )n+1
Γ
∫ dt = Fn+1(z0 ) 

Por lo que, sustituyendo en [4], se obtiene finalmente: 
 

F 'n(z0 ) = (n−1)Fn+1(z0 )+Fn+1(z0 ) = nFn+1(z0 ) 

 
(Habiendo utilizado la hipótesis de inducción para n-1: f 'n−1(z0 ) = (n−1) fn(z0 )) 
 
Corolario (Formula de la integral de Cauchy para la derivada n-sima): 
Toda función holomorfa f (z) en un abierto conexo D admite derivadas de cualquier 
orden que son también holomorfas. 
Para cualquier punto z∈ D , y para cualquier ciclo Γ  homológico a cero módulo D, tal que ϑ (Γ, z) ≠ 0  se verifica que  
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f n) (z) = n!
2π iϑ (Γ, z)

f (t)
(t − z)n+1 dt

Γ
∫  

 
En efecto: 

Si llamamos fk(z) =
1

2π iϑ (Γ, z)
f (t)

(t − z)k
dt

Γ
∫ , k =1,...,n,... 

se tiene, partiendo de la fórmula de Cauchy: 

f (z) ≡ f1(z) =
1

2π iϑ (Γ,z)
f (t)
t − z

dt
Γ
∫  

f '(z) ≡ f1 '(z) =1. f2 (z)= 1
2π iϑ (Γ, z)

f (t)
(t − z)2 dt

Γ
∫  

f "(z) = (1. f2 (z))' = 2 f3(z) = 2
2π iϑ (Γ,z)

f (t)
(t − z)3 dt

Γ
∫  

f '''(z) = (2. f3(z))' = 2.3. f4 (z) = 2.3
2π iϑ (Γ, z)

f (t)
(t − z)4 dt

Γ
∫  

... ... ... ... ...  

... ... ... ... ...  

f n) (z) = (2...n−1. fn(z))' = 2.3...n. fn+1(z) =
2.3...n

2π iϑ (Γ, z)
f (t)

(t − z)n+1 dt
Γ
∫  

En definitiva:                    f n) (z) = n!
2π iϑ (Γ, z)

f (t)
(t − z)n+1 dt

Γ
∫                    [5] 

 
 
 
 
 
 
 
03. Los teoremas de Morera y Liouville 
 
Teorema de Morera: 
Si f (z) está definida y es continua en el abierto conexo D, si es 

f (z)dz
Γ
∫ = 0

 
para todo ciclo Γ  de D, entonces f (z)es holomorfa en D. 
Demostración: 
Si la función dada es continua en D y para todo ciclo de D la integral de contorno es 
nula, esto implica que admite una primitiva F(z) tal que F '(z) = f (z), por lo que 
F(z) es holomorfa en D, y por el último corolario, también F '(z) es holomorfa, luego f (z)es holomorfa en D. 
 
Teorema de Liouville: 
Una función holomorfa y acotada en todo el plano debe reducirse a una constante. 
Demostración: 
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Si en la fórmula [5] consideramos z= z0 ∈ D  y tomamos como ciclo la frontera de la bola con centro en dicho punto, Γ = F(B(z0;r ))⊆ D , obtenemos en el supuesto que f (z) sea acotada,  f (t) ≤M , que  
f n) (z0 ) ≤ n!

2π iϑ
M
rn+1 2π irϑ = n!.M.r −n  (Desigualdad de Cauchy) 

Si hacemos en la desigualdad n=1 y para r→∞ , será f '(z0 ) ≤M.r −1 = 0 lo que implica que f '(z0 ) = 0 , y por tanto, f (z0 ) = const . 
 
Una aplicación interesante del teorema de Liouville es el poder diseñar una 
demostración bastante simple del teorema fundamental del álgebra: 
Sea p(z) un polinomio de grado mayor que cero. Si no tuviera raíces en C, 

entonces la función inversa, 1 p(z0 ), sería holomorfa en todo el plano, y además, al 

ser lim
z→∞

(1 p(z0 )) = 0, sería, además, acotada, por lo que al aplicar el teorema de 

Liouville habríamos de deducir que es una constante. Como esto no es lo que 
ocurre, se deduce que ha de tener al menos una raíz en C. Si simplificamos el 
polinomio eliminando la raíz podemos continuar el razonamiento con cada 
polinomio restante, con lo cual llegamos a la conclusión que ha de tener tantas 
raíces como indique su grado. 
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