FORMAS BILINEALES 1I. Acerca de las Formas Simétricas. Las Formas Alternadas
Carlos S. Chinea

FORMAS BILINEALES 11

Acerca de las Formas Bilineales
Simétricas. Las Formas Alternadas

Este articulo es una continuacién de “Introduccion a las formas bilineales”, que se
encuentra publicado en esta misma web, en la direccion
http://casanchi.com/mat/formasbilineales01.htm
en donde definimos las formas bilineales como aplicaciones del producto cartesiano
de dos k-espacios vectoriales, V y W, en su cuerpo k de definicion. En dicho articulo
obtenemos la expresidon analitica, los homomorfismos asociados a derecha e
izquierda, establecemos los conceptos de Forma Degenerada, Forma Ordinaria y
Forma No Singular, para, finalmente, definir el concepto de ortogonalidad respecto
a una forma bilineal y establecer sus propiedades basicas, lo que nos permitiria
definir también el rango de una forma bilineal. Todo ello expuesto en seis
apartados, de 01 a 06, por lo que empezaremos ahora este articulo con el apartado
07.

La novedad que introducimos en este trabajo es que ahora los espacios Vy W
utilizados antes son el mismo espacio vectorial, por lo que aqui trataremos de
formas bilineales sobre un espacio vectorial dado (V;k).

07. Formas bilineales sobre un espacio vectorial

Consideremos el conjunto de las formas bilineales definidas del producto cartesiano
de los k-espacios V y W en su cuerpo de definicion.

L(V.W:k)

Si hacemos V=W, representaremos tal conjunto por L2(V). Es decir, si

fel’(V), VxyeV’ f(xy) ek, siendo obviamente validos los teoremas vistos

en las secciones anteriores para el caso de que los espacios V y W pudieran ser
distintos.

Teorema 07.1:
Se verifican los siguientes isomorfismos

a) L*(V)~ Mat (k)
b) L*(V)~ Hom(V,V*)

Demostracién:
a) se verifica por el Teorema 02.2, y b) es asimismo un caso particular del
Teorema 03.1.

Definicion 07.1: Se definen las formas simétricas y antisimétricas (o alternadas) del
siguiente modo:

fel’(V)smetricac> V(X y) € V2, f(x y)= f(},X)
f e L*(V)antismetrica<>V(x,y) € V*, f(x,y)=—F(y, X)
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Representaremos por Li(\OyLi(V) los respectivos conjuntos de las formas
bilineales simétricas y alternadas:

L) ={f e L’(V)/ f(xy)=f(y,x).,Yxy eV}
L(\V)={feLlWV)/ f(xy)=—f(yx),Vxye V]

Teorema 07.2:
Si el cuerpo k es de caracteristica distinta de 2, entonces

Ve LX(V), f(xx)=0
Demostracion:
De ser Y(x,y) € V*, f(x, y)=—F(y,x), serd f(x,x)=—F(x,x)>2f(xXx)=0
y siendo car(k)#2, sera necesariamente f(x,x)=0.

Teorema 07.3:
Los conjuntos L2(V) y L2(V) son subespacios vectoriales del k-espacio L*(V).
Demostracion:

a) Vf,ge Ly(\V),Va,p € k (af +Bg)(x )= (af)(X Y)+(SI)(X y) =
=af(x y)+Bo(x Y)=af(y,x)+ By, X)=(af + Bg)(y, X) —>
—af+pge L(V)

b) Vf,ge L,(V),Va,f € k (af +g)(x y)=(af)(X Y)+(SI(X y)=
=af(x y)+Bax y)=—af(y,X)- Ba(y, x)=—(af + BY)(V, X) >
—af+pge (V)

Teorema 07.4:
Si el cuerpo k es de caracteristica distinta de 2, entonces

LV)nL(V)={0}
Demostracion:
f(x.y)=f(y,X)

Fxy)=—fpxy  OP=TTXNS

vfe L(V)NL(V),Vx ye V —>{
—-2.f(xy)=0-> f(xy)=0—> f=0
Es decir, Vf e L:(V)nL(V), f=0— LY(V)n LZa(V)={0}

Teorema 07.5:

Sea k un cuerpo de caracteristica distinta de 2.

Se verifica que el espacio vectorial de las formas bilineales sobre un k-espacio
vectorial V dado es la suma directa de los subespacios de las formas bilineales
simétricas y alternadas:

L)@ LWV)=L(V)
Demostracion:
a) Veamos que L (V)+L.(V)=L'(V), es decir, que cualquier elemento de
V2 (k) es la suma de un elemento de (V) més un elemento de L2 (V):

vf e V?(k), V(x, y) € V?, sean
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col(x,y)=§[f(><,y)+ F(yx)] v coz(x,y):%[f(x,y)— F(y, )]

es obvio que ¢,(X, Y)=¢,(y,X) ¥ ¢,(X, ¥)=-¢,(¥, X), cumpliéndose que
1 1
A (X N+ 0 ()= [Fx )+ X))+ [Fxy)- (0] = F(xy)

En definitiva, es Vf e L*(V), f =, +¢,, ¢, € L)(V), 0, € L.(V), porlo que
L)+ L(V)=L(V)
b) Del teorema anterior Li(\ﬂm LZa(V):{O}
En definitiva:

L(+LV)=L(V)

- LWV)® LWV)=L(V)
L(V)NLy(V)={0}

Teorema 07.6:

Toda matriz cuadrada se descompone en la suma de una matriz simétrica y una
matriz antisimétrica.

Demostracion:

Por el teorema 07.1 a),L’(V)~Mat (k) siendo n=dimV. Sea @ dicho

isomorfismo y consideremos una base B:{q,...,en} cualquiera del espacio V. Se
tiene:

®: (V) Mat (k)
es decir, Vf e L>(V), ®(f)=Ae Mat (k), A:(a,j)ncon a;,=f(ee),i,j=1,..,n
por el teorema 07.5, 3¢, € Ly(V),p, € L}(V) tales que f=g +¢,, Vf e L*(V).
Luego  O(f)=D(p, +¢,)=D(p)+D(p,)=A +A € Mat,(k), A=(8)), A =(a),
con a; =g, (€6),i,j=1...n, ay=0,(68), hk=1,..,n
- Como ¢, € L)(V), a;=¢,(ee)=p/(ee)=a, > A=(a)), Smetrica
- Como ¢, € L:(V), &, =0,(66)=-0,(66,)=-a,, > A=(a;,), antismetrica

Definicién 07.2:
Sea f e L’(V)y sean W,W, subespacios de V tales que V=W+W,.Si Wy W,
son ortogonales respecto de f, se dice que V es la suma ortogonal de W y V|/2

(V=W LW).

Definicién 07.3:

El elemento X € V—{0} es istropo respecto a f e L*(V) sii f(x,x)=0.

Una variedad lineal M < V se dice que es isétropa sii M (\w(M)= ¢ y se dice que
es totalmente isétropa si ademas es M < w(M).

Una variedad lineal M cV se dice que es totalmente is6tropa maximal sii se
verifica que M Nw(M)=p,M CwoM)y YNcV/Ncwo(N),Mc N—->M=N.

Teorema 07.7:
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Sea f e L’(V) ordinaria y M variedad lineal de V. Se verifica que

MnoM)=¢pc-V=M 1L o(M)

Demostracion:
-Si V=M Lwo(M)y f e [*(V) es obvio que, por definicién, Mnao(M)=¢.
- Veamos la implicacién en sentido contrario:
Sabemos que si L1 y L2 son variedades lineales de un determinado espacio
vectorial V, se verifica que

dim(L, +L,)=dimL, +dimL, —dim(L, N L,)
en nuestro caso consideramos las variedades L, =M y L, = w(M), ambas
ortogonales: dim(M +a(M))=dim M +dim o(M)—dim(M nao(M))
Como, por el teorema 05.1, 10) sabemos que dim M = codimw(M)=n—-dimw(M)
se tendra que

dimV=n=dim M +dim (M) =dim(M + o(M))+dim(M no(M))

O sea,
dimV=dim(M + o(M))+dim(M nao(M))
De lo cual,
si Mno(M)=¢—> dim(Mno(M))=0
quedando

dimV=dim(M+ao(M))—>V=M+aw(M)
con lo que, al ser M y w(M) ortogonales, serd V=M 1 o(M)

Teorema 07.8:
Sea f e L’(V) ordinaria y M variedad lineal de V. Se verifica que
M noisotropa <> w(M) noisotropa
Demostracion:
Por el teorema 05.1,11) sabemos que si f es ordinaria se verifica que M =w*(M),
por lo que

M noisétropa<> M nao(M)={0} < o’ (M)na(M)={0} < o(M) noisétropa

Definicion 07.4:

Dados dos k-espacios vectoriales, \/1 y \/2, y formas bilineales cualesquiera
fel’(M)y f,el’(V,), se dice que un homomorfismo o:V —V, es métrico
respecto a f, y f, sii f,(ox,oy)=f(XYy),VXxyeV.

Si o es isomorfismo se denomina isometria.

(Tal denominacidon se debe a que la distancia en los espacios métricos se define
mediante una forma bilineal)

08.1 Acerca de las Formas Simétricas

08.1. Existencia de bases ortogonales:
Definicion 08.1:
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Sea V un k-espacio vectorial donde el cuerpo k de definicidn es de caracteristica
distinta de 2, y sea f e L[*(V) una forma bilineal. Una base B={u,...,u,} del

Uy

espacio V se dice ortogonal respecto de f sii f(u,.,uj): 0,Si#].

Teorema 08.1:
Vf e LX(V)AdimV >1 existe una base de V ortogonal respecto de f.
Demostracion
- Supongamos que f es una forma bilineal simétrica ordinaria:
Si dimV=1, la proposicién es obvia.
Si dimV=n>1, supongamosla cierta para algun n, <n.
Siempre existira algin elemento no nulo, U, € V—{O}, tal que f(u,u)#0, ya que
si no fuera asi se tendria que:
Vx,y eV, f(x+y,x+y)=f(xx)+ f(x, y)+ f(y,X)+ f(y,y)=
=0+ f(x, )+ f(y,x)+0=0. Es decir, Vx,y eV, f(x,y)+ f(y,x)=0
como f es, por hipétesis, simétrica, serd Vx,ye V,2f(x,y)=0, y, finalmente,
como el cuerpo k es de caracteristica distinta de 2: Vx,ye V, f(x,y)=0, con lo
que la forma bilineal f e Li(V) no seria ordinaria, contra la hipdtesis.
En definitiva, existe algin 1, € V—{0}, tal que f(u,u)#0.
Llamemos H =H(u,) el espacio engendrado por uy sea @(H) la variedad
ortogonal a H, esto es, que cumpla que Vxe H,Vze w(H), f(x,2)=0. Como se
tiene que Vxe H,Jaec k/x=au, serd Vze o(H), f(x,z2)=a.f(u,2)=0, siendo
Z# U, pues por construccién hemos elegido a u, de modo que f(u,u)#0. Es
decir, se tiene que Hnw(H)=¢, lo cual implica, por el teorema 07.7, que se
verifica la suma ortogonal H L w(H)=V.
Repitiendo el proceso ahora para otro elemento U, € w(H), se tiene que
f(u,u)#0, f(u,u,)=0, f(u,u)=0, siendo ahora H(u,u,) L w(H)=V.
Asi, mediante induccién encontramos que existe un conjunto {Ul,...,un} de n
elementos de V tal que H(U,...,u,) Lo(H)=V. Como la dimensién de V es n, el
espacio engendrado por {ul,...,un} es precisamente V, cumpliéndose que
f(u,u)=0, i=1,..,n
f(u,u)=0, §i=j

En definitiva, encontramos una base ortogonal, {ul,...,un}, en el espacio V.

- Sea ahora el caso en el que f es no ordinaria (degenerada):
Sea V[ c V el nucleo de f, es decir Vxe V-V, VyeV,, f(x,y)=0, y lamemos W

al complementario de V, en V: W=V-V,. Obviamente es WNV, =¢, luego es
WLV, =V.

Sea {U,...,U.} una base de V.

La restriccion de fa W, f:WkW — k, es ordinaria, pues de no ser asi, se tendria
que Ixe W-{0}/f(xy)=0,Yye W—->WnV,#¢. Al ser ordinaria, encontramos
en W una base ortogonal, mediante el proceso descrito antes. Sea {um,...,un} dicha
base ortogonal en W.
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©Priloees Y

Como es WLV =V, el conjunto {u,...,u U,} es una base ortogonal de V.

Resumen analitico:
Si fe Li(V) es ordinaria, existe una base ortogonal {ul,.. u} que genera el

LU,
espacio V, es decir, tal que f(u,u)=0, §i#j, f(u,uy=u’ =0, i=1,..,n. Si
llamamos U’ =a, i=1,..,n, se tiene que VXe V, X=Xl +..+X U, cumpliéndose

1

que f(XX)=X'=XU +..+XU =aXx +..+a,Xx

n“*n’

vectores, X=XU +...+ XU,y y=YU +..+Y,U,, sera:

lo cual nos indica que para dos

FCY)= XY= XN, + ot X Yolly = XY o+ 8K,

gue en forma matricial seria:

a 0 .. 0 ¥,

0 a .. 0 Y,
F(x9) = (X, X5, X;)

0 0 a, Y

- Si feLi(V) es no ordinaria, existe también una base ortogonal

{ul,...,u,+l,...,un} que genera el espacio V, de la que una parte genera al
nicleo V y el resto al espacio complementario W=V -V|. Sean {u,,,,...,u,}

los vectores que generan al niicleo V, y sean {u,...,u,} los vectores que
generana W=V-V,. Se tendra que
f(u,u)=0, s i#j, fuu)=u'=g=0, i<r, fUy,u)=u'=8=0, i>r
Se tiene que VX € V, X=X U +...+ XU +X .U, +..+ XU,y se cumple que
fx,X)=X =X +XU +X U

r+17r+1°

XU =axX +.+ax +0+.+0=ax +..+ax

Para dos vectores cualesquiera, X= XU +...+ XU, Y Y= WU +...+ YU, sera:
En forma matricial:

a . 0 .. 0|y
O cee 0 -y2
F)=( X))
cee cee cee cee oo _yn
0O .. 0 .. 0

(la caja diagonal no nula de la matriz es de orden r)

08.2. Planos hiperbdlicos. Existencia de planos hiperbdlicos:
Definicion 08.2:

Sea el par (V, f) constituido por un k-espacio vectorial V de dimensién 2, y una

forma bilineal simétrica ordinaria f e L3(V).
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Se dice que (V, f) es un plano hiperbdlico sii 3ze V/z#0AZ =0.
Una base {Unuz} de un plano hiperbdlico se dice que es un par hiperbdlico sii

w=0,u=0u.u-=1.

Teorema 08.2:

Para todo plano hiperbdlico (V, f) existe siempre un par hiperbdlico {ul,uz} que
genera al k-espacio: V=(u,u,)

Demostracion:

Sea zeV/z#0OAZ =0, que existe por definicién de plano hiperbdlico, y sea
U € V cualquiera tal que ambos generan el espacio: V =(zu).

Se cumple necesariamente que zuU=(0, pues caso contrario, si zu=(, entonces
Ze \/0, y como f es ordinaria, \/O :{O}, con lo que z=0, contra la hipdtesis de que

z#0.
Elijamos b e ktal que zbu=bzu=1, y elijamos también a e k por la condicién de

que (az+ bu)2 =0.

Veamos que, entonces, ambos vectores, U =z y U,=az+bu, son un par
hiperbdlico del plano hiperbdlico dado:

U12 =7 =0, por definicién.

uz2 =(az+bu)’ =0, por construccion.

U.u, = Zaz+buy=az +zbu=0+1=1

En definitiva, {U,U,}={Zaz+bu} es un par hiperbdlico.

Ejemplo:

Dado el plano hiperbdlico (V, f) en el que es ze V/zz0AZ =0, y es Ue Vtal
que el par genera al espacio, V=(zU). Encontrar un par hiperbdlico sabiendo que
es zu=1/3.

-  Encontramos b € k tal que Zbu=bzu=1—>b%=1—>b=3.
- Encontramos a € K tal que (az+ bu)2 =0 a'Z +b’t* +2azbu=

=0+90° +2a=0—>a:—§u2
Par hiperbdlico: {u,u,} :{z—§u22+3u}. Comprobamos:
9 2
U=7z=0, u =(az+buy :[—Euzz+3uj =0,
9 9 1
ul.uz=z(—5uzz+3u)=—5uzz2 +3uz=0+3.§=1

08.3. El primer teorema de Witt:
Teorema 08.3:
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Si fell(V)y son M,M, dos variedades lineales de V totalmente isétropas
maximales, se tiene que dimM, =dimM,.
Demostracion:
Sea M=M,nM, y llamemos M, y M, a las respectivas variedades
complementarias de M en M; y M'2 respectivamente.
Por ser M, y M, totalmente isétropas, M, c o(M,) y M, c @(M,), con lo que se
tiene la suma ortogonal M,=M LM,y M,=M L M,.
Puesto que M'2 < M,, por Teorema 05.1, 1), serda o(M,)c a)(M'z), con lo que sera
M, no(M,) = M;no(M,).
Por otra parte:
xe M,no(M,)—xe M, > xe M,AM, co(M,)— x € o(M,)—
> xeoM)H)ANMcM, > o(M))co(M)— xe ao(M)
y como M, =MuUM,, por teorema 05.1, 6) : (M, ) = o(M UM,)=o(M)nao(M,),
luego X € M, na(M,)— x € o(M)na(M,)— x € o(M,)
En definitiva, xe M,no(M,)— xe M,no(M,)—> M, no(M,)c M, no(M,)
y de ambas inclusiones de deduce la igualdad:

M; no(M,) = M, A o(M,)

' , , > M noM,))=M, no(M,)
M, na(M,) = M, no(M,) 1 o 2

Ahora bien, si xe M,no(M,)Ax#0 entonces X¢ M,, y la variedad lineal
engendrada L(M, U Xx) por la unién M, U x verifica que es totalmente isétropa con
M, c L(M, U x) propiamente, lo cual es imposible. Por tanto X=0 y se tiene que
M, ~o(M,)= Mima)(Mz):{O}
Del mismo modo encontramos que M, "o(M,)=M, no(M,)={0}.
Sies n=dimV, se tiene que
n> dim(Ml' +a)(M'2))=dimM1' +dima)(M'2)—dim(M1' ma)(M'z))
y como hemos comprobado que M, +a)(M'2):{0}, sera:
n>dim M, +dim (M, ) — dim M, < n—dim o(M,)
Por el Teorema 05.1,10) es dim M, =n—dim(M,), por lo que se tiene que

dim M, <dim M,
Razonando del mismo modo tendremos que

dim M, <dim M,
por lo cual, de ambas desigualdades:

dim M, =dim M, - dim M, =dim M,

Teorema 08.4:
Sea V un k-espacio vectorial, f e L’(V) ordinaria, M variedad lineal de Vy M, es

el nucleo de M respecto de f.

Si se tiene la descomposicion ortogonal M =M LU se cumple que si es {u,...,U,}

una base de MO, existen elementos V,,...,V, de Vortogonales a U tales que cada
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par {u,,v,} es un par hiperbdlico que engendra un plano hiperbdlico F,’ de modo

que se da la suma ortogonal
PL.LP1U
Demostracion:
Como es M, =(u,...,u,) LU, si consideramos M, =(u,,...,u,) LU sera, obviamente,
M, c M,, por lo que o(M,) c o(M,).
Es decir, 3V, € o(M,)/ Vv, ¢ ®(M,), con lo que v,.u4 =0, =0, =0, luego {u, v}
es un par hiperbdlico, cuyo plano hiperbdlico engendrado, R:(ul, Vl), cumple que
R L (t,...,u) LU,
Si repetimos el proceso, considerando ahora M, =(u,..,u,) LU, serda M,c M, y
o(M)co(M,),y v, e ®M,)/V, ¢ ®(M,), con lo que el par {u,,V,} verifica que
Vy.thy #0,, =0, 15 =0. Sies B =(u,V,) se tiene la suma ortogonal
RLRB L(u,..,u)LU.
Siguiendo inductivamente el proceso llegamos a

PLRL.LP1U
lo que prueba el teorema.

Definicién 08.3:
Una forma bilineal f e L:(V) se dice que es definida sii x#0, f(X,x)=x"#0.

Teorema 08.5 (Primer Teorema de Witt para formas simétricas):
Si es V un k-espacio vectorial y f e Li(V) ordinaria, existe una descomposicion de
V como suma directa

V=L ®L®M

tal que Ll,L2 son variedades totalmente isétropas maximales y la restriccidon de f a

H es una forma simétrica definida.
Demostracién:
El espacio V/ puede tener vectores isdtropos o no tenerlos.

Si no hay vectores isétropos, entonces L, =¢, L, =¢,, con lo cual, en este caso, es
V=L ®L, &M,y se verifica el teorema.

Veamos, por tanto, la prueba del teorema para el caso de que si existen vectores
isétropos en V.

En este caso existen variedades totalmente isétropas maximales, por el Lema de
Zorn. Sea L1 una variedad lineal totalmente isétropa maximal tal que L1 ;t{O}.

Por ser L, totalmente isétropa verifica que L, c o(L,).
Llamemos H al complementario de L, en a)(Ll):
H=o(L)-L, [*]
cumpliéndose que Vxe H/x#0, es f(x, X)EX2 #0, pues si fuera x> =0 entonces

la variedad N =(L,, X) seria totalmente isétropa y L, < N, lo cual es imposible por
ser L1 totalmente isétropa maximal.
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Es decir, L, es variedad lineal totalmente isétropa maximal y la restricciéon de fa H
es definida.

Por el Teorema 08.4 se tiene que si {ul,...,u,} es una base de L, existen vectores

del espacio V, V,,...,V,, ortogonales a H tales que los pares {u

i i

},i=1,..,r son

hiperbdlicos y los planos P,:(u,,v,), i=1,..,r, engendrados verifican la suma
ortogonal P1L B L..1LP1H.
Llamemos L, a la variedad lineal engendrada por los vectores V.., V.:
L,=(V,...,Vv.). Entonces L, es variedad lineal totalmente isétropa maximal que
cumple que

RLBL.1lPLlH=(L®L)LH=L,6L®H
como por el teorema 05.1,6) es dimL, =n—dima(L,), seréd dimL,+dimaw(L,)=ny
como de [*] es L, +H=w(L,) tenemos que dimL, +dim(L, ® H)=n
finalmente, al ser L, =(V,,...,V,) sera dimL, =dimL,, con lo cual

dimL, +dim(L, +H)=n

y, en definitiva L, ®L, @ H=V

08.4. La Ley de Sylvester:
Teorema 08.6 (La ley de Inercia de Sylvester)

. . 2
Dado un k-espacio vectorial V donde k es un cuerpo ordenado, y f e Ls(\O es una
forma ordinaria, se verifica que existe un Unico entero r tal que para cualquier

base ortogonal de V, {Vl,...,vn}, con respecto a la forma f, indica el nUmero exacto

de elementos de la base tales que f(v,.,v,.):vf>0, cumpliéndose para los

restantes vectores de la base que f(V,Vv)=V <0.

Demostracion:
La familia de las bases ortogonales de un espacio vectorial no es vacia, por el
teorema 08.1.

Sea {Vl,.. V} una base ortogonal. Como la forma f e LZS(V) es ordinaria, se

SV,
tendra que YV, € {V,..,V,}, f(V,v))=V =X #0.

i Y
Supongamos que son positivos r de estos cuadrados:
V=x>0,8i<r
V=x<0,8i>r
Supongamos otra base ortogonal distinta {u,...,u,} del mismo espacio vectorial en
la que son positivos s de los cuadrados de sus elementos:
U=y>08i<s
U=y<0,si>s

Se trata de probar que r=s. Esto es, que el numero de elementos de cuadrado
positivo es el mismo en cualquier base ortogonal del espacio.

Bastara probar que tomando los elementos de cuadrado positivo en una de las dos
bases y los elementos de cuadrado negativo en la otra, el conjunto de todos ellos
es linealmente independiente. Es decir, que los vectores

Viyeres Vi U u

st Yp
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son linealmente independientes.

Pues de ser asi, se tendria que r+n—-S<n o bien que r<s.

Andlogamente, si se tomaron los elementos de cuadrado positivo de la segunda
base y los de cuadrado negativo de la primera

Uy Uy Vs V,

M8 Yr+loe n
se tendria que S+nN—r<n, es decir, S<r
De ambas desigualdades se obtiene la igualdad buscada, r=s.
Veamos, pues, la independencia lineal:
mv,+..+mv,+ p, U, +...+ pu,=0—>mv,+..+mv. =—p,, U, —...— P,U,
elevando al cuadrado:
2

MV, +...+ MV, = P Uy +..+ DU
o bien

2 2
WX+ A NTX = P2 Yoy +o+ PLY,
igualdad en la que el miembro de la izquierda es mayor o igual a cero, mientras
que el miembro de la derecha es menor o igual a cero

mXx +...+nrx >0
Po Yo+t DY, <0

de lo que se deduce que ambos miembros son nulos y que, por tanto, los
coeficientes son todos igual a cero

m=.=m=p,,=.=p,=0

y los vectores V,,...,V,,U,,..., U, son linealmente independientes.

Ty TisH

Por analogia, también son linealmente independientes U,...,U,V,,,...,V,.

Corolario 1:

Si los elementos del cuerpo son cuadrados, existe una base ortogonal {Vl,...,vn} de

Vtalque V' =1,i<r y v} =—1,i>r, estando r univocamente determinado.

Demostracién:
Basta tomar un a base ortogonal cualquiera y dividir cada vector de la misma por el
elemento de k que corresponde a su cuadrado.

Asi,sies W =x>0,i<ry w=x<0,i>r, se tiene:
V:'2=Wi2/xi=1:i£r
Vi =w/%=-Li>r

La base {\4,...,vn} se denomina base ortonormal con respecto a la forma f € Li,(V)

Definiciéon 08.4:
Se dice que f e L:(V) es definida positiva sii r=n, o sea: ¥x e V, f(x,x)=x>>0

Se dice que f € LZS(V)es definida negativa sii r=0, o sea: Vxe V, f(x,X)=x" <0

Corolario 2:
El k-espacio vectorial V donde el cuerpo k es ordenadoy f e Li,(V) es ordinaria

admite siempre una descomposicidon en suma ortogonal V=V" 1V tal que f es

definida positiva en V' y es definida negativa en V.
Demostracion:
Es obvio, por la Ley de la Inercia de Sylvester.

Ejemplo:

11
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El producto escalar ordinario en el R-espacio \/3 de los vectores de la fisica clasica,

la forma bilineal f:\/32 — R, definida por
V(X Y) e \/32, fXXY)=Xxy=X,Y,+X.Y,+%.%;, € R,

siendo los vectores X=(X,X,,X;), ¥Y=(%,V, ¥;) en una base ortonormal dada, es
una forma bilineal, simétrica, ordinaria y definida positiva.

09. Sobre las Formas Alternadas
Las formas antisimétricas o alternadas, f e LZa(V), verifican, como ya hemos

establecido antes, que Y(x,)) e V?, f(x y)=—f(),x). Si el cuerpo k de definicion
del espacio V no es de caracteristica 2, se tiene

V(x,x)e V2, f(x,x)=—F(x,x)>2.f(x,x)=0—> f(x,X)=0

por lo que de forma natural se cumple que para un plano hiperbdlico P cualquiera,
no degenerado:

Vuy e Pu =0, f(u,u)=u =0, 3u, € P/u, =0, f(u,u)=w =0, f(u,u,)=0

pues de lo contrario P serfa un plano hiperbdlico degenerado y U, € B (nlcleo de P)
Sea, pues, {ul,uz} un par hiperbdlico de P. Dividiendo ambos vectores por una
constante podemos considerarlo normalizado:

U=0,0=0,fu,u)=1, fu,u)=-1

La matriz de la forma alternada en el plano hiperbdlico P se obtiene de inmediato:
Dados dos vectores x,y, expresados en el par hiperbdlico:
X= XU +xUu
y=yu-+yu
se tiene:
V(X y) e P, f(%Y)= FOXU + XUy, YU + Yyl ) =
= XY F (U )+ XY, (U, Uy)+ Y, F (U, )+ X, FUy, Uy) =
= XU+ X Yool Uy + YUy U+ X, Y50y = 04 X, Y5 14 X, Y. (1) +0 =

=X —XH
Matricialmente:

Y(xy) e P, f(X,Y):( X% )( _01 (1)] }):1

Definicion 09.1:
Denominamos espacio hiperbdlico a una suma ortogonal de planos hiperbdlicos.
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Teorema 09.1:

Dado un k-espacio vectorial Vy f e Li(V), se verifica la suma ortogonal
V=V, LH

Siendo V, el nlcleo de V', y H un subespacio hiperbdlico de V.

Demostracién:
Si es V; el nacleo de V, su complementario es no degenerado

VYweV/w#0,w =0,3ye V/wy=0, con y=0, Y =0, — (W, y)no degenerado y
P=(w,y) es un plano hiperbdlico que verifica que Pma)(P):{O}, por lo que,

aplicando el teorema 07.7, V=P® w(P), siendo w(P) no degenerado. Aplicando
induccion completamos el razonamiento.

Corolario:

Todas las formas alternadas no degeneradas, de dimension dada sobre un cuerpo
k, son isométricas.

Demostracion:

Si las formas alternadas son no degeneradas los nlcleos se reducen a {0}, y los

espacios vectoriales sobre los que estan definidas son suma directa de planos
hiperbodlicos, y la aplicacion que a un par hiperbdlico de un espacio vectorial
adjudica un par hiperbdlico de otro espacio vectorial es claramente una isometria.
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