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FORMAS BILINEALES II 
 

Acerca de las Formas Bilineales 
Simétricas. Las Formas Alternadas 
 
 
 
 
 
Este artículo es una continuación de “Introducción a las formas bilineales”, que se 
encuentra publicado en esta misma web, en la dirección  

http://casanchi.com/mat/formasbilineales01.htm 
en donde definimos las formas bilineales como aplicaciones del producto cartesiano 
de dos k-espacios vectoriales, V y W, en su cuerpo k de definición. En dicho artículo 
obtenemos la expresión analítica, los homomorfismos asociados a derecha e 
izquierda, establecemos los conceptos de Forma Degenerada, Forma Ordinaria y 
Forma No Singular, para, finalmente, definir el concepto de ortogonalidad respecto 
a una forma bilineal y establecer sus propiedades básicas, lo que nos permitiría 
definir también el rango de una forma bilineal. Todo ello expuesto en seis 
apartados, de 01 a 06, por lo que empezaremos ahora este artículo con el apartado 
07. 
 
La novedad que introducimos en este trabajo es que ahora los espacios V y W 
utilizados antes son el mismo espacio vectorial, por lo que aquí trataremos de 
formas bilineales sobre un espacio vectorial dado (V;k). 
 
 
07. Formas bilineales sobre un espacio vectorial 
 
Consideremos el conjunto de las formas bilineales definidas del producto cartesiano 
de los k-espacios V y W en su cuerpo de definición. 
 

L(V,W;k)   
Si hacemos V =W , representaremos tal conjunto por L2 (V) . Es decir, si 

f ∈ L2 (V), ∀x, y∈V2, f (x, y)∈ k, siendo obviamente válidos los teoremas vistos 
en las secciones anteriores para el caso de que los espacios V y W pudieran ser 
distintos. 
 
Teorema 07.1: 
Se verifican los siguientes isomorfismos 
 

a) L2 (V) ≈ Matn(k) 
b) L2 (V) ≈ Hom(V,V*) 

Demostración: 
a) se verifica por el Teorema 02.2, y b) es asimismo un caso particular del 

Teorema 03.1. 
 
Definición 07.1: Se definen las formas simétricas y antisimétricas (o alternadas) del 
siguiente modo:                             f ∈ L2 (V) simetrica↔∀(x, y)∈V2, f (x, y) = f (y, x)  

f ∈ L2 (V) antisimetrica↔∀(x, y)∈V 2, f (x, y) = − f (y, x)  
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Representaremos por Ls
2 (V)y La

2 (V)  los respectivos conjuntos de las formas 

bilineales simétricas y alternadas: 

Ls
2 (V)= f ∈ L2 (V) / f (x, y) = f (y, x),∀x, y∈V 2{ } 
La
2 (V) = f ∈ L2 (V) / f (x, y)= − f (y, x),∀x, y∈V 2{ } 

 
Teorema 07.2: 
Si el cuerpo k es de característica distinta de 2, entonces  
 

∀f ∈ La
2 (V), f (x, x) = 0  

Demostración: 

De ser ∀(x, y)∈V 2, f (x, y) = − f (y, x), será f (x, x) = − f (x, x)→ 2 f (x, x) = 0  

y siendo car(k) ≠ 2 , será necesariamente f (x, x) = 0. 
 
Teorema 07.3: 

Los conjuntos Ls
2 (V)  y La

2 (V)  son subespacios vectoriales del k-espacio L2 (V) . 
Demostración: 

a) ∀f ,g∈ Ls
2 (V), ∀α,β ∈ k, (α f +βg)(x, y) = (α f )(x, y)+ (βg)(x, y) =         =α f (x, y)+βg(x, y) =α f (y, x)+βg(y, x) = (α f +βg)(y, x)→        →α f +βg∈ Ls

2 (V) b) ∀f ,g∈ La2 (V), ∀α,β ∈ k, (α f +βg)(x, y)= (α f )(x, y)+ (βg)(x, y) =         =α f (x, y)+βg(x, y) = −α f (y, x)− βg(y, x) = −(α f +βg)(y, x)→        →α f + βg∈ La
2 (V)  

 
Teorema 07.4: 
Si el cuerpo k es de característica distinta de 2, entonces 
 

Ls
2 (V)∩La

2 (V) = 0{ } 

Demostración: 

∀f ∈ Ls
2 (V)∩La

2 (V),∀x, y∈V 2 →
f (x, y) = f (y, x)
f (x, y) = − f (y, x)






→ f (x, y) = − f (x, y)→ 

→ 2. f (x, y) = 0→ f (x, y) = 0→ f = 0  

Es decir, ∀f ∈ Ls
2 (V)∩La

2 (V), f = 0→ Ls
2 (V)∩La

2 (V) = 0{ }  

 
 
Teorema 07.5:  
Sea k un cuerpo de característica distinta de 2. 
Se verifica que el espacio vectorial de las formas bilineales sobre un k-espacio 
vectorial V dado es la suma directa de los subespacios de las formas bilineales 
simétricas y alternadas: 

Ls
2 (V)⊕ La

2 (V) = L2 (V) 
Demostración: 

a) Veamos que Ls
2 (V)+ La

2 (V) = L2 (V), es decir, que cualquier elemento de 
V2 (k)  es la suma de un elemento de Ls2 (V)  más un elemento de La2 (V) :              ∀f ∈V2 (k), ∀(x, y)∈V 2 , sean 
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ϕ1(x, y)=
1
2
f (x, y)+ f (y, x)[ ]    y  ϕ2 (x, y) = 12 f (x, y)− f (y, x)[ ]  es obvio que ϕ1(x, y) =ϕ1(y, x)  y ϕ2 (x, y) = −ϕ2 (y, x), cumpliéndose que  

ϕ1(x, y)+ϕ2 (y, x) =
1
2
f (x, y)+ f (y, x)[ ] + 1

2
f (x, y)− f (y, x)[ ] = f (x, y)  En definitiva, es ∀f ∈ L2 (V), f =ϕ1 +ϕ2, ϕ1 ∈ Ls2 (V),ϕ2 ∈ La2 (V) , por lo que 

Ls
2 (V)+ La

2 (V) = L2 (V) 
b) Del teorema anterior Ls

2 (V)∩La
2 (V) = 0{ } 

     En definitiva: 

Ls
2 (V)+ La

2 (V) = L2 (V)

Ls
2 (V)∩La

2 (V) = 0{ }






→ Ls

2 (V)⊕ La
2 (V) = L2 (V)  

 
 
Teorema 07.6: 
Toda matriz cuadrada se descompone en la suma de una matriz simétrica y una 
matriz antisimétrica. 
Demostración: 

Por el teorema 07.1 a),L2 (V) ≈ Matn(k) siendo n= dimV . Sea Φ  dicho 

isomorfismo y consideremos una base B= e1,...,en{ }  cualquiera del espacio V . Se 

tiene: 

Φ : L2 (V)→Matn(k) 
es decir,  ∀f ∈ L2 (V),Φ( f ) = A∈Matn(k),  A= aij( )ncon aij = f (eiej ), i, j =1,...,n 

por el teorema 07.5, ∃ϕ1 ∈ Ls
2 (V),ϕ2 ∈ La

2 (V) tales que f =ϕ1 +ϕ2, ∀f ∈ L
2 (V). 

Luego Φ( f ) =Φ(ϕ1 +ϕ2 ) =Φ(ϕ1)+Φ(ϕ2 ) = A1 +A2 ∈ Matn(k),  A1 = (aij
1 )n, A2 = (ahk

2 )n  
con aij

1 =ϕ1(eiej ), i, j =1,...,n, ahk
2 =ϕ2 (ehek ), h,k =1,...,n  

- Como ϕ1 ∈ Ls
2 (V), aij

1 =ϕ1(eiej ) =ϕ1(ejei ) = aji
1 → A= (aij

1 )n simetrica  

- Como ϕ2 ∈ La
2 (V),ahk

2 =ϕ2 (ehek ) = −ϕ2 (ekeh) = −akh
2 → A= (ahk

2 )n antisimetrica 

 
 
Definición 07.2: 

Sea f ∈ L2 (V) y sean W1,W2  subespacios de V tales que V =W1 +W2. Si W1 y W2  

son ortogonales respecto de f, se dice que V es la suma ortogonal de W1 y W2  
(V =W1 ⊥W2). 
 
Definición 07.3: 

El elemento x∈V − 0{ } es isótropo respecto a f ∈ L2 (V) sii f (x, x) = 0. 

Una variedad lineal M ⊆V  se dice que es isótropa sii  y se dice que 

es totalmente  isótropa si además es M ⊆ω(M ). 
Una variedad lineal M ⊆V  se dice que es totalmente isótropa maximal sii se 
verifica que  y ∀N ⊆V / N ⊆ω(N), M ⊆ N→M = N . 
 
 
Teorema 07.7: 
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Sea f ∈ L2 (V) ordinaria y M variedad lineal de V. Se verifica que 
 

M ∩ω(M ) =φ↔V =M ⊥ω(M )  
Demostración: 

- Si V =M ⊥ω(M ) y f ∈ L2 (V) es obvio que, por definición, M ∩ω(M ) =φ . 
- Veamos la implicación en sentido contrario: 
Sabemos que si L1 y L2 son variedades lineales de un determinado espacio 
vectorial V, se verifica que  

dim(L1 + L2 ) = dimL1 + dimL2 −dim(L1∩L2 )  
en nuestro caso consideramos las variedades L1 =M  y L2 =ω(M ) , ambas ortogonales:  dim(M +ω(M )) = dimM + dimω(M )− dim(M ∩ω(M )) 
Como, por el teorema 05.1, 10) sabemos que dimM = codimω(M ) = n− dimω(M )  se tendrá que 

dimV = n= dimM + dimω(M ) = dim(M +ω(M ))+ dim(M∩ω(M ))  
O sea,  

dimV = dim(M +ω(M ))+ dim(M∩ω(M ))  
De lo cual,  
                                si M ∩ω(M ) =φ → dim(M ∩ω(M )) = 0   quedando                                          dimV = dim(M +ω(M ))→V =M +ω(M ) 
con lo que, al ser M  y ω(M ) ortogonales, será V =M ⊥ω(M )  
 
 
Teorema 07.8: 

Sea f ∈ L2 (V) ordinaria y M variedad lineal de V. Se verifica que 

M noisótropa↔ω(M ) no isótropa 
Demostración: 

Por el teorema 05.1,11) sabemos que si f es ordinaria se verifica que M =ω 2 (M ), 
por lo que  

M noisótropa↔M∩ω(M ) = 0{ }↔ω 2 (M )∩ω(M ) = 0{ }↔ω(M ) no isótropa 

 
 
Definición 07.4: 
Dados dos k-espacios vectoriales, V1 y V2 , y formas bilineales cualesquiera 

f1 ∈ L
2 (V1) y f2 ∈ L

2 (V2 ), se dice que un homomorfismo σ :V1→V2  es métrico 

respecto  a f1 y f2  sii f2 (σ x,σ y) = f1(x, y), ∀x, y∈V1. 
Si σ  es isomorfismo se denomina isometría. 
(Tal denominación se debe a que la distancia en los espacios métricos se define 
mediante una forma bilineal) 
 
 
 
08.1  Acerca de las Formas Simétricas 

 
     08.1. Existencia de bases ortogonales: 
Definición 08.1: 
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Sea V un k-espacio vectorial donde el cuerpo k de definición es de característica 
distinta de 2, y sea f ∈ L2 (V) una forma bilineal. Una base B= u1,...,un{ }  del 

espacio V se dice ortogonal respecto de f sii f (ui,uj ) = 0, si i ≠ j . 
 
Teorema 08.1: 

∀f ∈ Ls
2 (V)∧dimV ≥1 existe una base de V ortogonal respecto de f. 

Demostración  
- Supongamos que f es una forma bilineal simétrica ordinaria: 

Si dimV=1, la proposición es obvia. 
Si dimV=n>1, supongámosla cierta para algún n0 < n. 

Siempre existirá algún elemento no nulo, u1 ∈V − 0{ }, tal que f (u1,u1) ≠ 0 , ya que 

si no fuera así se tendría que: 
∀x, y∈V, f (x+ y, x+ y) = f (x, x)+ f (x, y)+ f (y, x)+ f (y, y) =  

= 0+ f (x, y)+ f (y, x)+ 0 = 0 . Es decir, ∀x, y∈V, f (x, y)+ f (y, x) = 0  

como f es, por hipótesis, simétrica, será  ∀x, y∈V, 2 f (x, y) = 0, y, finalmente, 

como el cuerpo k es de característica distinta de 2: ∀x, y∈V, f (x, y) = 0, con lo 

que la forma bilineal f ∈ Ls
2 (V) no sería ordinaria, contra la hipótesis. 

En definitiva, existe algún u1 ∈V − 0{ }, tal que f (u1,u1) ≠ 0 . 

Llamemos H = H (u1) el espacio engendrado por u1y sea ω(H )  la variedad 

ortogonal a H, esto es, que cumpla que ∀x∈ H,∀z∈ω(H ), f (x, z) = 0 . Como se 

tiene que ∀x∈ H,∃a∈ k / x = au1, será ∀z∈ω(H ), f (x,z) = a. f (u1,z) = 0 , siendo 

z≠ u1, pues por construcción hemos elegido a u1 de modo que f (u1,u1) ≠ 0 . Es 

decir, se tiene que H∩ω(H ) =φ , lo cual implica, por el teorema 07.7, que se 

verifica la suma ortogonal H ⊥ω(H ) =V . 

Repitiendo el proceso ahora para otro elemento u2 ∈ω(H ) , se tiene que 

f (u2,u2 ) ≠ 0, f (u1,u2 ) = 0 , f (u1,u1) ≠ 0 , siendo  ahora H (u1,u2 )⊥ω(H ) =V . 

Así, mediante inducción encontramos que existe un conjunto u1,...,un{ }  de n 

elementos de V tal que H (u1,...,un)⊥ω(H ) =V . Como la dimensión de V es n, el 

espacio engendrado por  u1,...,un{ }  es precisamente V, cumpliéndose que 

f (ui,ui ) ≠ 0, i =1,...,n 

f (ui,uj ) = 0, si i ≠ j  
En definitiva, encontramos una base ortogonal, u1,...,un{ }, en el espacio V. 

 
- Sea ahora el caso en el que f es no ordinaria (degenerada): 

Sea V0 ⊆V  el núcleo de f, es decir ∀x∈V −V0, ∀y∈V0, f (x, y) = 0 , y llamemos W 

al complementario de V0  en V: W =V −V0 . Obviamente es W∩V0 =φ , luego es 

W ⊥V0 =V . 

Sea u1,...,ur{ }  una base de V0 . 
La restricción de f a W , f :WxW→ k , es ordinaria, pues de no ser así, se tendría 

que ∃x∈W− 0{ } / f (x, y) = 0,∀y∈W→W∩V0 ≠φ . Al ser ordinaria, encontramos 

en W una base ortogonal, mediante el proceso descrito antes. Sea ur+1,...,un{ } dicha 

base ortogonal en W.  
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Como es W ⊥V0 =V , el conjunto u1,...,ur+1,...,un{ }  es una base ortogonal de V. 

 
Resumen  analítico: 

Si f ∈ Ls
2 (V) es ordinaria, existe una base ortogonal u1,...,un{ }  que genera el 

espacio V, es decir, tal que f (ui,uj ) = 0, si i ≠ j , f (ui,ui ) = ui
2 ≠ 0, i =1,...,n. Si 

llamamos ui
2 = ai, i =1,...,n, se tiene que ∀x∈V, x = x1u1 +...+ xnun , cumpliéndose 

que f (x, x)= x2 = x1
2u1
2 + ...+ xn

2un
2 = a1x1

2 +...+ anxn
2 , lo cual nos indica que para dos 

vectores, x = x1u1 +...+ xnun  y y= y1u1 +...+ ynun, será: 

                  f (x, y) ≡ x.y= x1y1u1
2 +...+ xnynun

2 = a1x1y1 +...+anxnyn  
que en forma matricial sería: 

f (x, y) = (x1, x2,.., xn)

a1 0 ... 0
0 a2 ... 0
... ... ...
... ... ...
0 0 an























y1
y2
...
...
yn





















 

 

- Si f ∈ Ls
2 (V) es no ordinaria, existe también una base ortogonal 

u1,...,ur+1,...,un{ }  que genera el espacio V, de la que una parte genera al 

núcleo V0  y el resto al espacio complementario W =V −V0 . Sean ur+1,...,un{ } los vectores que generan al núcleo V0  y sean u1,...,ur{ }  los vectores que generan a W =V −V0 . Se tendrá que 

f (ui,uj ) = 0, si i ≠ j , f (ui,ui ) = ui2 = ai ≠ 0, i ≤ r , f (ui,ui ) = ui2 = ai = 0, i > r  Se tiene que ∀x∈V, x = x1u1 +...+ xrur + xr+1ur+1 +...+ xnun , y se cumple que 
f (x, x) = x2 = x1

2u1
2 + xr

2ur
2 + xr+1

2 ur+1
2 ...+ xn

2un
2 = a1x1

2 +...+ar xr
2 + 0+...+ 0 = a1x1

2 +...+ar xr
2  

 
Para dos vectores cualesquiera, x = x1u1 +...+ xnun  y y= y1u1 +...+ ynun, será: 

En forma matricial: 

f (x, y) = (x1, x2,.., xn)

a1 ... 0 ... 0
... ... ... ... ...
0 ... ar ... 0
... ... ... ... ...
... ... ... ... ...
0 ... 0 ... 0

























y1
y2
...
...
yn























 

                        (la caja diagonal no nula de la matriz es de orden r) 
 
 
08.2.  Planos hiperbólicos. Existencia de planos hiperbólicos:   
Definición 08.2: 
Sea el par (V, f )  constituido por un k-espacio vectorial V de dimensión 2, y una 

forma bilineal simétrica ordinaria f ∈ Ls
2 (V). 
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Se dice que (V, f )  es un plano hiperbólico sii  ∃z∈V / z≠ 0∧ z2 = 0 . 

Una base u1,u2{ } de un plano hiperbólico se dice que es un par hiperbólico sii 

u1
2 = 0, u2

2 = 0, u1.u2 =1. 
 
Teorema 08.2: 
Para todo plano hiperbólico (V, f )  existe siempre un par hiperbólico u1,u2{ } que 

genera al k-espacio: V = (u1,u2 ) 
Demostración: 

Sea z∈V / z≠ 0∧ z2 = 0 , que existe por definición de plano hiperbólico, y sea 

u∈V  cualquiera tal que ambos generan el espacio: V = (z,u) . 
Se cumple necesariamente que z.u≠ 0 , pues caso contrario, si z.u= 0 , entonces 

z∈V0, y como f es ordinaria, V0 = 0{ }, con lo que z= 0, contra la hipótesis de que 

z≠ 0. 
Elijamos b∈ k tal que z.bu= bzu=1, y elijamos también a∈ k por la condición de 

que az+bu( )2 = 0 . 

Veamos que, entonces, ambos vectores, u1 = z y u2 = az+bu , son un par 
hiperbólico del plano hiperbólico dado: 

u1
2 = z2 = 0 , por definición. 

u2
2 = (az+bu)2 = 0 , por construcción. 

u1.u2 = z(az+bu) = az
2 + zbu= 0+1=1 

En definitiva, u1,u2{ } = z,az+bu{ }  es un par hiperbólico. 

 
Ejemplo: 

Dado el plano hiperbólico (V, f )  en el que es z∈V / z≠ 0∧ z2 = 0 , y es u∈V tal 

que el par  genera al espacio, V = (z,u) .  Encontrar un par hiperbólico sabiendo que 

es z.u=1 3. 

- Encontramos b∈ k  tal que z.bu= bzu=1→ b. 1
3
=1→ b= 3. 

- Encontramos a∈ k tal que az+bu( )2 = 0→ a2z2 +b2u2 + 2az.bu= 

= 0+ 9u2 + 2a= 0→ a= − 9
2
u2  

Par hiperbólico: u1,u2{ } = z,− 9
2
u2z+3u









. Comprobamos: 

u1
2 = z2 = 0 , u2

2 = (az+bu)2 = − 9
2
u2z+3u








2

= 0, 

u1.u2 = z(−
9
2
u2z+3u) = − 9

2
u2z2 +3uz= 0+3.1

3
=1 

 
 
 
08.3.  El primer teorema de Witt:   
Teorema 08.3: 
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Si f ∈ Ls
2 (V) y son M1,M2  dos variedades lineales de V totalmente isótropas 

maximales, se tiene que dimM1 = dimM2 . 
Demostración: 

Sea M =M1∩M2 y llamemos M1
' y M2

'  a las respectivas variedades 

complementarias de M  en M1
' y M2

'  respectivamente. 

Por ser M1 y M2  totalmente isótropas, M1 ⊆ω(M1) y M2 ⊆ω(M2 ), con lo que se 

tiene la suma ortogonal  M1 =M ⊥M1
'  y  M2 =M ⊥M2

' . 

Puesto que M2
' ⊆ M2 , por Teorema 05.1, 1), será ω(M2 )⊆ω(M2

' ) , con lo que será 

M1
' ∩ω(M2 )⊆M1

'∩ω(M2
' ). 

Por otra parte:  

x∈M1
'∩ω(M2

' )→ x∈ M1→ x∈ M1∧M1 ⊆ω(M1)→ x∈ω(M1)→  

→ x∈ω(M1)∧M ⊆ M1→ω(M1)⊆ω(M )→ x∈ω(M )  y como M2 =M∪M2
' , por teorema 05.1, 6) :ω(M2 ) =ω(M ∪M2

' ) =ω(M )∩ω(M2
' ), 

luego x∈M1
' ∩ω(M2

' )→ x∈ω(M )∩ω(M2
' )→ x∈ω(M2 ) 

En definitiva,  x∈ M1
' ∩ω(M2

' )→ x∈ M1
'∩ω(M2 )→M1

'∩ω(M2
' )⊆ M1

'∩ω(M2 )  
y de ambas inclusiones de deduce la igualdad: 

M1
'∩ω(M2 )⊆ M1

'∩ω(M2
' )

M1
'∩ω(M2

' )⊆ M1
'∩ω(M2 )






→M1

'∩ω(M2
' ) =M1

'∩ω(M2 ) 

Ahora bien, si x∈ M1
'∩ω(M2

' )∧ x ≠ 0  entonces x∉ M2 , y la variedad lineal 

engendrada L(M2∪ x)  por la unión M2∪ x verifica que es totalmente isótropa con  

M2 ⊆ L(M2∪ x) propiamente, lo cual es imposible. Por tanto x = 0  y se tiene que  

M1
'∩ω(M2

' ) =M1
'∩ω(M2 ) = 0{ } 

Del mismo modo encontramos que M2
' ∩ω(M1

' ) =M2
' ∩ω(M1) = 0{ }. 

Si es n= dimV , se tiene que  

n≥ dim M1
' +ω(M2

' )( ) = dimM1
' +dimω(M2

' )− dim M1
'∩ω(M2

' )( )  
y como hemos comprobado que M1

' +ω(M2
' ) = 0{ }, será: 

n≥ dimM1
' + dimω(M2

' )→ dimM1
' ≤ n− dimω(M2

' )  
Por el Teorema 05.1,10) es dimM2

' = n− dimω(M2
' ), por lo que se tiene que 

dimM1
' ≤ dimM2

'  
Razonando del mismo modo tendremos que 

dimM2
' ≤ dimM1

'  
por lo cual, de ambas desigualdades:  

dimM2
' = dimM1

' → dimM2 = dimM1 
 
Teorema 08.4: 

Sea V  un k-espacio vectorial, f ∈ Ls
2 (V) ordinaria, M variedad lineal de V y M0  es 

el núcleo de M respecto de f. 
Si se tiene la descomposición ortogonal M =M0 ⊥U  se cumple que si es u1,...,ur{ }  

una base de M0 , existen elementos v1,...,vr  de Vortogonales a U  tales que cada 
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par ui,vi{ } es un par hiperbólico que engendra un plano hiperbólico Pi  de modo 

que se da la suma ortogonal 
P1 ⊥ ... ⊥ Pr ⊥U  

Demostración: 
Como es M0 = u1,...,ur( ) ⊥U , si consideramos M1 = u2,...,ur( ) ⊥U  será, obviamente,  

M1 ⊆ M0 , por lo que ω(M0 )⊆ω(M1). 
Es decir, ∃v1 ∈ω(M1) / v1 ∉ω(M0 ) , con lo que v1.u1 ≠ 0, v1

2 = 0, u1
2 = 0 , luego u1,v1{ }  

es un par hiperbólico, cuyo plano hiperbólico engendrado, P1 = u1,v1( ) , cumple que  

P1 ⊥ u2,...,ur( ) ⊥U . 

Si repetimos el proceso, considerando ahora M2 = u3,...,ur( ) ⊥U , será M2 ⊆ M1 y 

ω(M1)⊆ω(M2 ), y ∃v2 ∈ω(M2 ) / v2 ∉ω(M1), con lo que el par u2,v2{ } verifica que 

v2.u2 ≠ 0, v2
2 = 0, u2

2 = 0 . Si es P2 = u2,v2( ) se tiene la suma ortogonal 

P1 ⊥ P2 ⊥ u3,...,ur( ) ⊥U . 

Siguiendo inductivamente el proceso llegamos a  
P1 ⊥ P2 ⊥ ... ⊥ Pr ⊥U  

lo que prueba el teorema. 
 
 
 
Definición 08.3: 

Una forma bilineal f ∈ Ls
2 (V) se dice que es definida sii x ≠ 0, f (x, x) = x2 ≠ 0 . 

 
 
Teorema 08.5 (Primer Teorema de Witt para formas simétricas): 

Si es V  un k-espacio vectorial y f ∈ Ls
2 (V) ordinaria, existe una descomposición de 

V como suma directa 
V = L1⊕ L2 ⊕M  

 
tal que L1,L2  son variedades totalmente isótropas maximales y la restricción de f a 
H es una forma simétrica definida. 
Demostración: 
El espacio V  puede tener vectores isótropos o no tenerlos. 
Si no hay vectores isótropos, entonces L1 =φ, L2 =φ ,, con lo cual, en este caso, es 

V = L1⊕ L2 ⊕M , y se verifica el teorema. 
Veamos, por tanto, la prueba del teorema para el caso de que sí existen vectores 
isótropos en V . 
En este caso existen variedades totalmente isótropas maximales, por el Lema de 
Zorn. Sea L1 una variedad lineal totalmente isótropa maximal tal que L1 ≠ 0{ } . 

Por ser L1 totalmente isótropa verifica que L1 ⊆ω L1( ) . 
Llamemos H al complementario de L1 en ω L1( ):  
                                                H =ω L1( ) − L1                      [*] 

cumpliéndose que ∀x∈ H / x ≠ 0, es f (x, x) ≡ x2 ≠ 0 , pues si fuera x2 = 0  entonces 

la variedad N = (L1, x) sería totalmente isótropa y L1 ⊆ N , lo cual es imposible por 

ser L1 totalmente isótropa maximal. 
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Es decir, L1 es variedad lineal totalmente isótropa maximal y la restricción de f a H 
es definida. 
Por el Teorema 08.4 se tiene que si u1,...,ur{ }  es una base de L1, existen vectores 

del espacio V, v1,...,vr , ortogonales a H tales que los pares ui,vi{ }, i =1,..., r  son 

hiperbólicos y los planos Pi = ui,vi( ), i =1,..., r , engendrados verifican la suma 

ortogonal P1 ⊥ P2 ⊥ ... ⊥ Pr ⊥ H . 

Llamemos L2 a la variedad lineal engendrada por los vectores v1,...,vr : 
L2 = (v1,...,vr ) . Entonces L2 es variedad lineal totalmente isótropa maximal que 
cumple que  
                          P1 ⊥ P2 ⊥ ... ⊥ Pr ⊥ H = L2 ⊕ L1( ) ⊥ H = L2 ⊕ L1⊕H  

como por el teorema 05.1,6) es dimL1 = n− dimω(L1), será dimL1 +dimω(L1) = n y 

como de [*] es L1 +H =ω L1( )  tenemos que dimL1 +dim(L1⊕H ) = n 

finalmente, al ser L2 = (v1,...,vr )  será dimL1 = dimL2, con lo cual  

                                         dimL2 + dim(L1 +H ) = n 
y, en definitiva L2 ⊕ L1⊕H =V  
 
 
 
08.4. La Ley de Sylvester: 
Teorema 08.6 (La ley de Inercia de Sylvester) 

Dado un k-espacio vectorial V donde k es un cuerpo ordenado,  y f ∈ Ls
2 (V) es una 

forma ordinaria,  se verifica que existe un único entero r  tal que para cualquier 
base ortogonal de V , v1,...,vn{ }, con respecto a la forma f,  indica el número exacto 

de elementos de la  base tales que f (vi,vi ) = vi
2 > 0, cumpliéndose para los 

restantes vectores de la base que f (vi,vi ) = vi
2 < 0. 

Demostración: 
La familia de las bases ortogonales de un espacio vectorial no es vacía, por el 
teorema 08.1. 

Sea v1,...,vn{ }  una base ortogonal. Como la forma  f ∈ Ls
2 (V) es ordinaria, se 

tendrá que ∀vi ∈ v1,...,vn{ }, f (vi ,vi ) ≡ vi2 = xi ≠ 0 . 

Supongamos que son positivos r de estos cuadrados: 

vi
2 = xi > 0, si i ≤ r

vi
2 = xi < 0, si i > r






 

Supongamos otra base ortogonal distinta u1,...,un{ }  del mismo espacio vectorial en 

la que son positivos s de los cuadrados de sus elementos: 

ui
2 = yi > 0, si i ≤ s

ui
2 = yi < 0, si i > s






 

Se trata de probar que r=s. Esto es, que el numero de elementos de cuadrado 
positivo  es el mismo en cualquier base ortogonal del espacio. 
Bastará probar que tomando los elementos de cuadrado positivo en una de las dos 
bases y los elementos de cuadrado negativo en la otra, el conjunto de todos ellos 
es linealmente independiente. Es decir, que los vectores 
v1,...,vr ,us+1,...,un 
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son linealmente independientes.  
Pues de ser así, se tendría que r +n− s≤ n o bien que r ≤ s. 
Análogamente, si se tomaron los elementos de cuadrado positivo de la segunda 
base y los de cuadrado negativo de la primera 
u1,...,us,vr+1,...,vn 
se tendría que s+n− r ≤ n,  es decir, s≤ r  
De ambas desigualdades se obtiene la igualdad buscada, r=s. 
Veamos, pues, la independencia lineal: 
m1v1 +...+mrvr + ps+1us+1 +...+ pnun = 0→m1v1 +...+mrvr = −ps+1us+1 −...− pnun 
elevando al cuadrado: 

m2
1v
2
1 +...+m

2
rvr
2 = p2s+1us+1

2
s+1 + ...+ pn

2un
2  

o bien 

m2
1x1 +...+m

2
r xr = p

2
s+1ys+1 +...+ pn

2yn  
igualdad en la que el miembro de la izquierda es mayor o igual a cero, mientras 
que el miembro de la derecha es menor o igual a cero 

m2
1x1 +...+m

2
r xr ≥ 0

p2s+1ys+1 +...+ pn
2yn ≤ 0






 

de lo que se deduce que ambos miembros son nulos y que, por tanto, los 
coeficientes son todos igual a cero 

m1 = ... =mr = ps+1 = ... = pn = 0 

y los vectores v1,...,vr ,us+1,...,un son linealmente independientes. 

Por analogía, también son linealmente independientes u1,...,us,vr+1,...,vn. 
 
Corolario 1: 
Si los elementos del cuerpo son cuadrados, existe una base ortogonal v1,...,vn{ }  

de 

V tal que vi
2 =1, i ≤ r   y vi

2 = −1, i > r , estando r unívocamente determinado. 

Demostración: 
Basta tomar un a base ortogonal cualquiera y dividir cada vector de la misma por el 
elemento de k que corresponde a su cuadrado. 

Así, si es wi
2 = xi > 0, i ≤ r  y wi

2 = xi < 0, i > r , se tiene: 

vi
2 =wi

2 xi =1, i ≤ r
vi
2 =wi

2 xi = −1, i > r
 

La base v1,...,vn{ }  
se denomina base ortonormal con respecto a la forma f ∈ Ls

2 (V) 
 
Definición 08.4: 

Se dice que f ∈ Ls
2 (V) es definida positiva sii r=n, o sea: ∀x∈V, f (x, x) ≡ x2 > 0  

Se dice que f ∈ Ls
2 (V)es definida negativa sii r=0, o sea: ∀x∈V, f (x, x) ≡ x2 < 0  

 
Corolario 2:  

El k-espacio vectorial V donde el cuerpo k es ordenado y  f ∈ Ls
2 (V) es ordinaria 

admite siempre una descomposición en suma ortogonal V =V+ ⊥V− tal que f es 

definida positiva en V+  y es definida negativa en V− . 
Demostración: 
Es obvio, por la Ley de la Inercia de Sylvester. 
 
Ejemplo: 
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El producto escalar ordinario en el R-espacio V3  de los vectores de la física clásica, 

la forma bilineal f :V3
2 → R, definida por  

 

∀(x, y)∈V3
2, f (x, y) ≡ x.y= x1, y1 + x2.y2 + x3.y3 ∈ R, 

 
siendo los vectores x = (x1, x2, x3), y= (y1, y2, y3) en una base ortonormal dada, es 

una forma bilineal, simétrica, ordinaria y definida positiva. 
 
 
 
 
 
 
 
09. Sobre las Formas Alternadas 

Las formas antisimétricas o alternadas, f ∈ La
2 (V), verifican, como ya hemos 

establecido antes, que ∀(x, y)∈V 2, f (x, y) = − f (y, x). Si el cuerpo k de definición 
del espacio V no es de característica 2, se tiene 
 

∀(x, x)∈V 2, f (x, x) = − f (x, x)→ 2. f (x, x) = 0→ f (x, x) = 0  
 

por lo que de forma natural se cumple que para un plano hiperbólico P cualquiera, 
no degenerado:  
 

∀u1 ∈ P, u1 ≠ 0, f (u1,u1) = u1
2 = 0 , ∃u2 ∈ P /u2 ≠ 0, f (u2,u2 ) = u2

2 = 0, f (u1,u2 ) ≠ 0  
 
pues de lo contrario P sería un plano hiperbólico degenerado y u1 ∈ P0 (núcleo de P) 
Sea, pues, u1,u2{ } un par hiperbólico de P. Dividiendo ambos vectores por una 

constante podemos considerarlo normalizado:  
 

u1
2 = 0, u2

2 = 0, f (u1,u2 ) =1, f (u2,u1)= −1 
 

La matriz de la forma alternada en el plano hiperbólico P se obtiene de inmediato: 
Dados dos vectores x,y, expresados en el par hiperbólico: 

x = x1u1 + x2u2
y= y1u1 + y2u2

 

se tiene: 

∀(x, y)∈ P2, f (x, y) = f (x1u1 + x2u2, y1u1 + y2u2 ) =  

= x1y1 f (u1,u1)+ x1y2 f (u1,u2 )+ x2y1 f (u2,u1)+ x2y2 f (u2,u2 ) ≡ 

≡ x1y1u1
2
1 + x1y2.u1.u2 + x2y1.u2.u1 + x2y2u2

2
1 = 0+ x1y2.1+ x2y1.(−1)+ 0 = 

= x1y2 − x2y1 
Matricialmente: 

∀(x, y)∈ P2, f (x, y) = x1 x2( ) 0 1
−1 0










y1
y2











  

 
Definición 09.1: 
Denominamos espacio hiperbólico a una suma ortogonal de planos hiperbólicos. 
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Teorema 09.1: 

Dado un k-espacio vectorial V y f ∈ La
2 (V), se verifica la suma ortogonal 

 V =V0 ⊥ H  

Siendo V0 el núcleo de V , y H un subespacio hiperbólico de V. 
Demostración: 
Si es V0 el núcleo de V, su complementario es no degenerado 

∀w∈V /w≠ 0, w2 = 0, ∃y∈V /w.y≠ 0 , con y≠ 0, y2 = 0, → (w, y)no degenerado y 

P = (w, y) es un plano hiperbólico que verifica que P∩ω(P) = 0{ }, por lo que, 

aplicando el teorema 07.7,  V = P⊕ω(P) , siendo ω(P) no degenerado. Aplicando 
inducción completamos el razonamiento. 
 
Corolario: 
Todas las formas alternadas no degeneradas, de dimensión dada sobre un cuerpo 
k, son isométricas. 
Demostración: 
Si las formas alternadas son no degeneradas los núcleos se reducen a 0{ }, y los 

espacios vectoriales sobre los que están definidas son suma directa de planos 
hiperbólicos, y  la aplicación que a un par hiperbólico de un espacio vectorial 
adjudica un par hiperbólico de otro espacio vectorial es claramente una isometría. 
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