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La función exponencial de variable compleja 
 
 
 
 

1. Introducción 
La serie formal  

S(X) = 1
n!
Xn

n≥0
∑  

tiene radio de convergencia infinito, pues de la fórmula 

lim
n→∞
inf an

an+1
≤ ρ ≤ lim

n→∞
sup an

an+1
 

se tiene, para esta serie: 

lim
n→∞
inf an

an+1
= lim

n→∞
inf

1
n!

1
(n+1)!

= lim
n→∞
inf n+1 =∞  

lim
n→∞

sup an
an+1

= lim
n→∞
sup

1
n!

1
(n+1)!

= lim
n→∞
sup n+1 =∞  

así, pues, ρ =∞ . 
 
Nos ocupamos en este artículo de los aspectos algebraicos y topológicos de la 
función exponencial ez . 
Consideraremos para ello tanto el campo (C,+,.)  de los números complejos, como 
el espacio topológico (C,T ) , donde T es la topología métrica en C inducida por la 
métrica usual, esto es: 
 

∀z1, z2 ∈C, d(z1, z2 ) = z1 − z2  

 
Consideraremos también el espacio numérico R2 , así como el espacio topológico 
(R2,T ') , donde T’ es la topología natural. 

Resulta inmediato que la aplicación h :R2 →C  tal que ∀(x, y)∈ R2, h(x, y) = x + iy  
es un isomorfismo de espacios vectoriales y también un homeomorfismo de 
espacios topológicos. 
 
 

2. Definición y propiedades básicas 
Def. 01: 
Se define la función exponencial de variable compleja como la función compleja 

f :C→C dada por la serie formal S(X) = 1
n!
Xn

n≥0
∑ : 

f (z) = ez = 1
n!
zn

n≥0
∑  
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Si es h :R2 →C  el indicado homeomorfismo del plano numérico en el plano 
complejo, estudiaremos la función h−1  f h :R2 → R2  y su comportamiento frente 

a las estructuras topológica y geométrica de R2 . 
 
La restricción al campo real de la función exponencial de variable compleja así 
definida coincide con la definición de la función exponencial de variable real 
 

∑
≥

==∈∀
0 !
1)(,

n

nx x
n

exfRx  

 
Teorema 1: La función exponencial de variable compleja es: 

a) Indefinidamente derivable, siendo 
dez

dz
= ez  

b) Analítica ∀z ∈C . 
c) Un homomorfismo C,+( )→ C ',.( ) , siendo C ' =C − 0{ } . 

Demostración: 
a) Es consecuencia de que la función definida en su disco de convergencia por una 
serie formal es indefinidamente derivable en dicho disco de convergencia, siendo la 
derivada primera de la función igual a la función que define la serie derivada. 

En particular, la serie derivada de la serie S(X) = 1
n!
Xn

n≥0
∑

 
es la misma serie 

S(X) = 1
n!
Xn

n≥0
∑ . S '(X) = S(X)→ dez

dz
= ez  

b) Es obvio, de la teoría de series complejas. 
c) Veamos que f (z1 + z2 ) = f (z1). f (z2 ), ∀z1, z2 ∈C  y que f (z)∈C ' =C − 0{ }, ∀z ∈C : 

f (z1). f (z2 ) = e
z1.ez2 = 1

n!
z1
n

n≥0
∑
#

$
%

&

'
(. 1

m!
z2
m

m≥0
∑
#

$
%

&

'
(=

1
p!.(n− p)!

z1
pz2

n−p =
p=0

n

∑
n≥0
∑ 	
  

=
1
n!

n!
p!.(n− p)!

z1
pz2

n−p =
p=0

n

∑
n≥0
∑ 1

n!
(z1 + z2 )

n = ez1+z2 =
n≥0
∑ f (z1 + z2 )  

   En particular, f (z). f (−z) = f (z+ (−z)) = f (0) = e0 =1→ f (z) ≠ 0, ∀z ∈C , por tanto 

   es ∀z ∈C, f (z)∈C − 0{ } . 

 
Teorema 2:  
a) La función exponencial de variable compleja ( ) ( )TCTCez ,,: →  

es continua. 

b) La función ( ) ( )',',:)( TCTCezf z →=  es continua. 
Demostración: 
a) Toda función definida por una serie formal es continua en su disco de 
convergencia. 
b) Si llamamos ( ) ( )TCTCezg z ,,:)( →=  

se tiene que ')( CCg ⊆ . Por tanto, para 
ver la continuidad, bastará probar que la imagen inversa de un abierto de T’ es un 
abierto de T: 

TGgGCgUgGCUTGTU ∈=∩=→∩=∈∃∈∀ −−− )()'()('/,' 111
 

Por tanto ( ) ( )',',:)( TCTCezf z →=  
es continua. 

 



La función exponencial de variable compleja                                         Carlos S. CHINEA 

	
   3	
  

3. La exponencial imaginaria 
3.1. Definición: 

Teorema 3: 
a) Sea { }1/ =∧∈= zCzzU . Se tiene que ,.)(U  es subgrupo multiplicativo de 

,.)(C . 
b) Sean las aplicaciones 

             CRq →: , tal que Ryiyyq ∈∀= ,)( . 

            CCf →: , tal que Czezf z ∈∀= ,)( . 
 Entonces la aplicación CRgqf →= :o  verifica: 
1. URg ⊆)( . 
2. g es un homomorfismo: ,.)(),( UR →+ . 

3. ),(),(: TCTRg d → es una aplicación continua. 
Demostración: 
a) Como (C,.) es un grupo multiplicativo, (U,.) será subgrupo multiplicativo de (C,.) 
sii UzzUzUz ∈∈∃∈∀ −− 11 ./, . Se cumple: 

=∧∈→=→=∈∃→≠→=∈∀ −−−−− 11111 ..1.1./01, zzUzzzzzzCzzzUz
 

UzzUzzzz ∈∧∈→=→== −−−− 1111 .11.
 

b) 

1. 
g(y) = ( f q)(y) = f (iy) = eiy

g(−y) = ( f q)(−y) = f (−iy) = e−iy

"
#
$

%$
→ g(y).g(−y) =1→ g(y).g(−y) =1→  

→∈∧=∈∀→∈−−→ RygygRyUygygygyg )(1)(,)().(),(),(  
URgUygRy ⊆→∈∈∀→ )()(,  

2. )().(.)(,, 21
)(

2121
2121 ygygeeeyygRyy iyiyyyi ===+→∈∀ +  

3. La aplicación CiyyqRyCRq ∈=∈∀→ )(,/:  es trivialmente continua. 

   La  aplicación CezfCzCCf z ∈=∈∀→ )(,/: es continua por el teorema 2. 

   La aplicación [ ] CeiyfyqfyqfygRyCRg iy ∈====∈∀→ )()())(()(,/: o es 
   continua, por ser composición de funciones continuas.  
 
 

3.2. Definición de las funciones seno y coseno: 
Del teorema anterior, sabemos que 

eiy =1+ 1
1!
iy− 1

2!
y2 − 1

3!
iy3 + 1

4!
y4 + 1

5!
iy5 − 1

6!
y6 − 1

7!
iy7 −... =  

= 1− 1
2!
y2 + 1

4!
y4 − 1

6!
y6 +...

"

#
$

%

&
'+ i

1
1!
y− 1
3!
y3 + 1

5!
y5 − 1

7!
y7 −...

"

#
$

%

&
'  

 
Def. 02: 
Definimos las funciones sen(y)  y cos(y)  como las aplicaciones de R en R dadas por 
 

...
!6
1

!4
1

!2
11)cos( 642 +−+−= yyyy ,               ...

!7
1

!5
1

!3
1

!1
1)( 753 −−+−= yyyyysen  

 
es decir, por las series formales  

...
!6
1

!4
1

!2
11)( 642 +−+−= XXXXT     y     ...

!7
1

!5
1

!3
1

!1
1)( 753 −−+−= XXXXXS  
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cuyas derivadas respectivas son: 

)(...
!7
1

!5
1

!3
1

!1
1)(' 753 XSXXXXXT −=−+−+−=  

)(...
!6
1

!4
1

!2
11)(' 642 XTXXXXS =+−+−=  

De lo cual se obtiene respectivamente: 
d cos(y)
dy

= −sen(y)  y  
dsen(y)
dy

= cos(y)  

Ambas funciones son obviamente analíticas y se verifica la conocida igualdad: 
 

eiy = cos(y)+ isen(y) . 
 
Análogamente, se obtiene  e−iy = cos(y)− isen(y)  
 
 
 

4. Sobre el número π  
Teorema 4: 
El conjunto I = y / y ∈ 0,2[ ]∧cos(y) = 0{ }  verifica: 

a) I ≠φ (no es vacío) 

b) ∃h ∈ R / h =min I (existe elemento mínimo) 
Demostración: 

a) Para probar que I  es no vacío veamos que la función continua )cos( y  toma 

valores de signo opuesto en los extremos del intervalo [ ]2,0 , por lo que, 
aplicando el teorema de Bolzano, existirá un punto intermedio 20 << c  en el 
que )cos( y  toma el valor cero ( 0)cos( =c ). Efectivamente: 

010cos >=  

=−+−++−=−+−+−= ...
!8
22

!6
1

24
16)11(1...

!8
22

!6
12

!4
12

!2
112cos

8
6

8
642  

            0..
!8
2

!6
2

24
1610

86

<−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−⎟

⎠

⎞
⎜
⎝

⎛ −−=  

          Por tanto, [ ] φ≠→=∈∃ Icc 0cos/2,0  
 

b) El conjunto I  está inferiormente acotado por el cero. Para ver que existe 
elemento mínimo de I  hemos de tener en cuenta que el ínfimo, que es el 
máximo de las cotas inferiores, puede o no pertenecer al conjunto. Si el 
ínfimo pertenece al conjunto es también su elemento mínimo. Por ejemplo, 
el intervalo (3,4] no tiene elemento mínimo y si tiene elemento máximo. 
Sea c el elemento ínfimo de I , Ic inf= .Veamos que entonces  ha de ser, 

Ic∈ , y por tanto su elemento mínimo, mediante un razonamiento por 
reducción al absurdo, es decir, probando que si no se cumpliera la tesis, 

Ic∈ , entonces también será falsa la hipótesis: 
Supongamos, entonces que Ic inf=  y que Ic∉ , esto es, que 0cos ≠c . 
Como la función )cos( y  es continua existirá una bola de centro en c en 
donde tampoco se anula el coseno: 
 

IcycBycB inf0)cos(),,(/),( ≠→≠∈∀∃ δδ 	
  

En definitiva, IIc mininf == . 
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Def. 03: 
Definimos el número real π  por:  
  

π
2
=min I =min y / y ∈ 0,2[ ]∧cos(y) = 0{ }

 

Teorema 5: 
Sea g :R→U  definida por ∀y ∈ R, g(y) = eiy . Se tiene: 

1) La aplicación g : 0,π 2[ ]→U1 =U∩C1 , (C1  es el primer cuadrante del plano) es 

un homeomorfismo. 
2) La aplicación g : (h,h+ 2π ]→U, ∀h ∈ R  es una aplicación biyectiva continua. 

3) La aplicación g : h,h+ 2π( )→U − eih{ }, ∀h ∈ R  es un homemorfismo. 

4) Si k ≤ 2π la aplicación g : h,h+ k( )→ g h,h+ k( )⊆U, ∀h ∈ R  es un homeomor-

fismo. 
Demostración: 
1) se trata de probar que g es aplicación biyectiva, y que es continua con inversa 
continua entre los espacios métricos A = 0,π 2[ ],U1 =U∩C1 : 

Puesto que ∀y ∈ A, g(y) = eiy = cos(y)+ isen(y) , y siendo en A  las funciones cos(y)  
estrictamente decreciente  y sen(y)  estrictamente creciente, la función g  es 

inyectiva. Y  también es sobreyectiva, pues ∀z ∈U1, ∃y ∈ A / g(y) = eiy = z . Por tanto 
es una biyección. 
Puesto que ambos espacios, A ≡ 0,π 2[ ],U1 =U∩C1  son espacios métricos, 

cerrados y acotados, son espacios compactos, y todo subconjunto cerrado en 
cualquiera de ellos es también compacto. Como la imagen de un compacto es 
también un compacto, se tiene que la imagen por g  de un cerrado del espacio 
métrico (A,TA )  es un cerrado del espacio métrico (U1,TU1 ) , y asimismo, la imagen 

inversa de un cerrado de (U1,TU1 )  es un cerrado de (A,TA ) , por lo que g−1  es 

también continua. Luego g  es homeomorfismo. 
También, por razón análoga, son homeomorfismos las aplicaciones 
g : π 2,π[ ]→U2 =U∩C2  (C2 : 2º cuadrante) 

g : π,3π 2[ ]→U3 =U∩C3  (C3 : 3º cuadrante) 

g : 3π 2,2π[ ]→U4 =U∩C4  (C4 : 4º cuadrante) 

Obviamente, es r = 2π  el mínimo número real positivo tal que eri =1(e2πi =1) . 
2) Por lo anterior, la aplicación g : (0, 2π ]→U  es una biyección continua, que, sin 

embargo, no es un homemorfismo, pues  la inversa g−1 :U→ g : (0, 2π ]  no es 

continua en w =1, ya que la sucesión de elementos de U : wn{ }n≥0  tal que 

wn = cos(1 n)+ isen(1 n)  verifica que limwn =1
n→∞

, mientras que la sucesión zn{ }n≥0

donde es zn = g
−1(wn ) =1 n  no tiene límite en (0, 2π ] , por lo que g−1  es discontinua 

en w =1. 
Si consideramos el intervalo (h,h+ 2π ]  y la aplicación ϕ : (h,h+ 2π ]→ (0, 2π ] , 
donde es ϕ(x) = x − h , vemos que se trata de un homeomorfismo, por lo que 
g : (h,h+ 2π ]→U  es también solo una biyección continua. 
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3) Como (h,h+ 2π ]⊆ (0, 2π ] se tiene que g : h,h+ 2π( )→U − eih{ }, ∀h ∈ R
 
es, al 

menos, biyección continua. Veamos que la inversa es también continua, por lo que 
ha de ser homeomorfismo: 
∀w ∈U, ∃b∈ h,h+ 2π( ) / eib = w b único( ) . 
Si g−1 :U − eih{ }→ h,h+ 2π( )  no fuera continua en w = eib  existiría una bola 

B(b;ε)⊆ h,h+ 2π( )  y una sucesión wn{ }n≥0  
tales que lim

n→∞
wn = w  y entonces 

g−1(w) = xn ∉ B(b;ε), ∀n ∈ N→ xn ∈ h,h+ 2π( )−B(b;ε) . 
Como D = h,h+ 2π[ ]−B(0;ε)  es cerrado y acotado, cumple la propiedad de 

Bolzano-Weierstrass, por lo que ∃c ∈ D
−

 que es punto de acumulación de xn{ }  tal 

que, como es obvio, c ≠1  y eic = w = eib , lo cual es imposible por ser g  una 
biyección. 
En definitiva, g−1  es continua y g : (h,h+ 2π )→U − eih{ }  es homeomorfismo. 

4) Como (h,h+ k)⊆ (h,h+ 2π )  y g : (h,h+ 2π )→U − eih{ }  es homeomorfismo, será 

también homeomorfismo g : h,h+ k( )→ g h,h+ k( )⊆U, ∀h ∈ R .  

 
Teorema 6: 
Sea g :R→U  definida por ∀y ∈ R, g(y) = eiy . Se tiene: 
1) U  es conexo. 
2) El homomorfismo g : (R,+)→ (U,.)  verifica que ker g = 2πn / n ∈ Z{ }= 2πZ . 

3) Sea el grupo cociente R 2π z  y el epimorfismo canónico n :R→ R 2π z . La 
aplicación g :R→U  induce una aplicación q :R 2π z→U  tal que g = q n . Si TN  
es la topología cociente en R 2π z  se tiene: 
     a) q : (R 2π z,+)→ (U,.)  es un isomorfismo. 
     b) q : (R 2π z,TN )→ (U,TU )  es un homemorfismo. 
Demostración: 
1) Puesto que U = g h,h+ 2π( ]( ), g  es continua y h,h+ 2π( ]  un intervalo conexo de 

R , se deduce que U  es conexo. 
2) Por el teorema anterior sabemos que 2π  es el mínimo número real positivo tal 
que e2πi =1. Como g  es homomorfismo, será también e2πni =1, ∀n ∈ Z . 
Veamos que ∀r ∈ ker g  es r = 2πn : 
Si no fuera r = 2πn  se tendría que 2πn < r < 2π (n+1) . Si llamamos s = r − 2πn , se 

tendrá que 0 < r − 2πn < 2π → 0 < s < 2π , y eri = e(s+2πn)i = esi.e2πni = esi =1, lo cual 
contradice la afirmación de que es 2π  el mínimo número real positivo tal que 
verifica e2πi = g(2π ) =1. Por consiguiente es ker g = 2πZ . 
3) De la descomposición canonica del epimorfismo g :R→U obtenemos el 
homomorfismo q : (R / 2πZ,+)→ (U,.)  tal que g = q.n , cumpliendo que: 

3.a) q  es continua, pues si G ∈ TU  entonces g−1(G)∈ Td , es decir n−1(q−1(G))∈ Td . 

Por definición de topología cociente q−1(G)∈ Tn, lo que prueba que q  es continua. 

3.b) Como 0,2π[ ]  es compacto en R, n  es continua y n 0,2π[ ]( ) = R / 2πZ , se 

deduce que R / 2πZ  es TN − compacto . 
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3.c) Como una aplicación continua y biyectiva de un espacio topológico compacto 
en un espacio topológico de Hausdorff es un homeomorfismo, podemos afirmar que 
la aplicación q : (R / 2πZ,TN )→ (U,TU )  es homeomorfismo. 
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