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La funcidon exponencial de variable compleja

1. Introduccion
La serie formal

1
S(X)= E—'X”
n=0 n:
tiene radio de convergencia infinito, pues de la férmula
.. a ) a
liminf |—-|< p < limsup|—*~
n—oe a n—oc
n+l n+l
se tiene, para esta serie:
1
.. a, .. n! ..
liminf = liminf 1— = liminf |n+1| =00
n—o a”+1 n—0 %n + 1) ! n—o

2 S

lim sup = limsup | = 1imsup|n + 1| =00

n—>o n—>o 1
e Hosny

Nos ocupamos en este articulo de los aspectos algebraicos y topoldgicos de la
funcién exponencial e°.
Consideraremos para ello tanto el campo (C,+,.) de los nimeros complejos, como
el espacio topologico (C,T), donde T es la topologia métrica en C inducida por la
métrica usual, esto es:

asi, pues, p=o,

VZI’Zz e C’ d(ZI,ZZ) = |Zl _Z2|

Consideraremos también el espacio numérico R”, asi como el espacio topoldgico
(R*>,T"), donde T’ es la topologia natural.
Resulta inmediato que la aplicacién h:R> —C tal que VY(x,y)E R* h(x,y)=x+iy

es un isomorfismo de espacios vectoriales y también un homeomorfismo de
espacios topoldgicos.

2. Definicion y propiedades basicas
Def. 01:
Se define la funcién exponencial de variable compleja como la funcidon compleja

f:C — Cdada por la serie formal S(X) = E%X” :
n

n=0 """

f@=e =31z

n=0 """
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Si es h:R*—C el indicado homeomorfismo del plano numérico en el plano
complejo, estudiaremos la funcién h™'o foh:R*> — R> y su comportamiento frente

a las estructuras topoldgica y geométrica de R*.

La restriccion al campo real de la funcidn exponencial de variable compleja asi
definida coincide con la definicion de la funcién exponencial de variable real

VxER, f(x)=¢" = Z%x”
n= n:

Teorema 1: La funcién exponencial de variable compleja es:

Z
Z

a) Indefinidamente derivable, siendo =e

dz
b) Analitica VzEC.
c) Un homomorfismo (C,+)—(C',.), siendo C'=C-{0}.
Demostracion:
a) Es consecuencia de que la funcién definida en su disco de convergencia por una

serie formal es indefinidamente derivable en dicho disco de convergencia, siendo la
derivada primera de la funcion igual a la funcién que define la serie derivada.

. . . . | R . .
En particular, la serie derivada de la serie S(X)= E—'X es la misma serie
n!

n=0

S(X) = E X". S'(X)= S(X)—>d—z7—e

b) Es obV|o, de la teoria de series complejas.
c) Veamos que f(z, +2,) = f(z).f(z,), V2,2, EC y quef(z)EC'=C—{0},Vz€C :

f(z)-f(z)=¢"€e” =(2%z{1) (E ) 22 27 =

n=0 m>0 n=0 p=0 p' (l’l p)'

EE ,(n Sy 4" E%(Zﬁzz)" =" =f(z,+2,)

n=0 p—O n=0

nzO

En particular, f(z).f(-2)= f(z+(-2))= f(0)=¢"=1— f(z)=0,VzEC, por tanto
es VZEC, f(z)EC-{0}.

Teorema 2:

a) La funcién exponencial de variable compleja e’ :(C,T)—> (C,T) es continua.
b) La funcién f(z) =¢" :(C,T)—>(C',T') es continua.

Demostracion:

a) Toda funcidn definida por una serie formal es continua en su disco de
convergencia.

b) Si llamamos g(z)=e" :(C,T)%(C,T) se tiene que g(C)C C'. Por tanto, para

ver la continuidad, bastara probar que la imagen inversa de un abierto de T’ es un
abierto de T:

YUET ,AGET/U=CNG—=g ' U) =g (C'NG) =g (G)ET
Por tanto f(z)=e":(C,T)—(C',T") es continua.
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3. La exponencial imaginaria
3.1. Definicion:
Teorema 3:
a) Sea U={Z/ZEC/\‘Z‘ =1}. Se tiene que (U,.) es subgrupo multiplicativo de
(C,.).
b) Sean las aplicaciones
q:R—C, tal queg(y) =iy, VyER.
f:C—C, talque f(z)=¢",VzEC.
Entonces la aplicacion fogq = g: R — C verifica:
1. g(RA)CU.
2. ges un homomorfismo: (R,+)— (U,.).
3. g:(R,T,)—(C,T)es una aplicacién continua.

Demostracion:
a) Como (C,.) es un grupo multiplicativo, (U,.) sera subgrupo multiplicativo de (C,.)

sii VzeU,3z7' €U /zz' €U . Se cumple:
VzeU,lzZl=1—=z=0—3"'E€C/zz" =1—>‘Z.Z_]‘ =1—zz" EUA‘Z.Z_l‘ =
= |Z|.‘Z_l‘ =1 —>‘Z_l‘ =l—=z'€UnAzz'EU

b)

V4

M =(feq)(y)=fly)=e"
1 SOTUEQOIZIIIZE ) g =1 g gy =1
8y =(foq)(=y) = f(=iy)=e"

—8(»), 8(=3), 8(»)-g(-y)EU = Vy ER,
— VyER, g(»)EU = g(R)CU
2. Vy,, ER = g(y, +,) = e = oM o™ = g(»)gy,)
3. La aplicaciéng: R — C/VYyER, q(y) =iy EC es trivialmente continua.

La aplicacion f:C — C/VzE€C, f(z) =e” €ECes continua por el teorema 2.

La aplicacion g : R — C/VyER, g(») = (f 0 9)(¥) = flg(»)]= f(iy) = " ECes
continua, por ser composicion de funciones continuas.

gy =1rg(»)ER—

wm

3.2. Definicién de las funciones seno y coseno:
Del teorema anterior, sabemos que

I e T T T U B
y _ — I _ _ N _ _ =
CEl Y Y Y Y ey T

(s Lo 1T 4 1 g A1 1 5 1 5 1 4
_(1 zy +Zy ay +...)+z(ﬁy Ey +§y %y )

Def. 02:
Definimos las funciones sen(y) y cos(y) como las aplicaciones de R en R dadas por

PR T VR B 1 1 5 1 5 1,
cos(y)—l—z!y +4!y —6!y +... sen(y)—l!y—3!y +5!y —7!y -

es decir, por las series formales
1 1 1 1
TX)=1-—X"+—X*"-=—X°+.. vy SX)=-X-
2! 4 6! 1!

Lyl Ly
3! 5! 7!



La funcién exponencial de variable compleja Carlos S. CHINEA

cuyas derivadas respectivas son:

T'(X) = Ayl Ly Lyl -S(X)
I! 3! 5! 7!
S'(X) IR L L I T(X)
2! 4! 6!
De lo cual se obtiene respectivamente: @=—sen(y) y @=cos(y)
Y

Ambas funciones son obviamente analiticas y se verifica la conocida igualdad:
e” =cos(y)+isen(y).

Analogamente, se obtiene ¢™ = cos(y)—isen(y)

4. Sobre el nimero 7
Teorema 4:

El conjunto I={y/y€[0,2]Acos(y)=0} verifica:
a) I =¢(no es vacio)

b) 3h € R/h=minl (existe elemento minimo)
Demostracion:

a) Para probar que / es no vacio veamos que la funcién continua cos(y) toma

valores de signo opuesto en los extremos del intervalo [0,2], por lo que,
aplicando el teorema de Bolzano, existird un punto intermedio0 <c <2 en el

que cos(y) toma el valor cero (cos(c) =0). Efectivamente:

cos0=1>0
8 8
cos2=1—122 +l24 —126 +2—.—..=1—(1+1)+E—l26 +2—.—..=
2! 4! 6! 8! 24 6! 8!

6 8
—0-(1-20) (= -2 - <0
24 6 8

Por tanto, EICE[O,Z]/COSC =0—=>/1=¢

b) El conjunto I esta inferiormente acotado por el cero. Para ver que existe
elemento minimo de / hemos de tener en cuenta que el infimo, que es el
maximo de las cotas inferiores, puede o no pertenecer al conjunto. Si el
infimo pertenece al conjunto es también su elemento minimo. Por ejemplo,

el intervalo (3,4] no tiene elemento minimo vy si tiene elemento maximo.

Sea c el elemento infimo de/,c =inf/.Veamos que entonces ha de ser,
c€Il, y por tanto su elemento minimo, mediante un razonamiento por
reduccién al absurdo, es decir, probando que si no se cumpliera la tesis,

c€& 1, entonces también sera falsa la hipotesis:

Supongamos, entonces que c=inf/ y quec&]I, esto es, que cosc=0.
Como la funcién cos(y) es continua existira una bola de centro en c en

donde tampoco se anula el coseno:
3AB(c,8) /Yy EB(c,0), cos(y) = 0 — ¢ = inf [

En definitiva, ¢ =inf / = min/ .
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Def. 03:
Definimos el nimero real ot por:

§= min/ = min{y/y €[0,2]acos(y) =0}

Teorema 5:

Sea g:R— U definida por Yy ER, g(y)=e". Se tiene:

1) La aplicacion g:[O,Jr/2]—>U1 =UNC,, (C, es el primer cuadrante del plano) es
un homeomorfismo.

2) La aplicacion g:(h,h+2mx]—U,VYh € R es una aplicacion biyectiva continua.

3) La aplicacién g:(h,h+2mx) —>U—{eih}, Vh ER es un homemorfismo.

4) Si k=2mla aplicacion g:(h,h+k)—g(h,h+k)CU, VhER es un homeomor-

fismo.
Demostracion:
1) se trata de probar que g es aplicacion biyectiva, y que es continua con inversa

continua entre los espacios métricos A =[0,77/2],U, =UNC;:

Puesto que Vy€E A, g(y)=e” =cos(y)+isen(y), y siendo en A las funciones cos(y)
estrictamente decreciente y sen(y) estrictamente creciente, la funcién g es
inyectiva. Y también es sobreyectiva, pues Yz EU,,JyE A/ g(y) =" = z. Por tanto
es una biyeccion.

Puesto que ambos espacios, AE[O,J‘L’/Z],Ul =UNC, son espacios métricos,

cerrados y acotados, son espacios compactos, y todo subconjunto cerrado en
cualquiera de ellos es también compacto. Como la imagen de un compacto es
también un compacto, se tiene que la imagen por g de un cerrado del espacio

métrico (A,7,) es un cerrado del espacio métrico (UI,TUI), y asimismo, la imagen

inversa de un cerrado de (UI,TUI) es un cerrado de (A,T,), por lo que g es
también continua. Luego g es homeomorfismo.

También, por razén analoga, son homeomorfismos las aplicaciones
g:[7/2,7]—=U,=UNC, (C,: 2° cuadrante)

g:[7.37m/2]=U,=UNC, (C;: 3° cuadrante)

g:[37/2,2x]|—=U,=UNC, (C,: 4° cuadrante)

Obviamente, es r =27 el minimo nimero real positivo tal que e¢” =1(e*™ =1).
2) Por lo anterior, la aplicacion g:(0,2x]—U es una biyecciéon continua, que, sin
embargo, no es un homemorfismo, pues la inversa g :U—g:(0,2x] no es

continua en w=1, ya que la sucesién de elementos de U: {wn}n tal que

=0
w, =cos(l/n)+isen(1/n) verifica que limw, =1, mientras que la sucesién {z,}

n—o0

n=0

donde es z, =g '(w,)=1/n no tiene limite en (0,27], por lo que g~' es discontinua
en w=1.

Si consideramos el intervalo (h,h+2m] y la aplicacién ¢:(h,h+27x]—(0,27],
donde es @(x)=x-h, vemos que se trata de un homeomorfismo, por lo que
g:(h,h+2mx]—U es también solo una biyeccién continua.
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3) Como (h,h+2m]C(0,2]se tiene que g:(h,h+2n)—>U—{eih},Vh€R es, al

menos, biyeccion continua. Veamos que la inversa es también continua, por lo que
ha de ser homeomorfismo:

VwEU,EIbE(h,h+2n:)/e”’=w (bbinico).
Si g'le—{e”’}—>(h,h+2n) no fuera continua en w=¢" existiia una bola
B(b;e) S (h,h+2m) y una sucesiéon {w,} = tales que limw,=w y entonces

g w)=x, & B(b;e),YnEN — x, € (h,h+27)- B(bse).
Como D=[h,h+2:r]—B(0;£) es cerrado y acotado, cumple la propiedad de

Bolzano-Weierstrass, por lo que ¢ € D que es punto de acumulacion de {xn} tal
que, como es obvio, c¢=1 vy e“=w=¢e", lo cual es imposible por ser g una
biyeccion.

En definitiva, g~' es continua y g:(h,h+2:r)—>U—{e”’} es homeomorfismo.

4) Como (hh+k)C(hh+2m) y g:(h,h+2:r)—>U—{e”’} es homeomorfismo, sera
también homeomorfismo g:(h,h+k)—> g(h,h+k)CU, VhER.

Teorema 6:
Sea g:R— U definida por Yy ER, g(y)=e". Se tiene:
1) U es conexo.
2) El homomorfismo g:(R,+)— (U,.) verifica que kerg ={27m/n e Z} =2n7Z .
3) Sea el grupo cociente R/2mz y el epimorfismo canénico n:R—R/2xz. La
aplicacion g:R—U induce una aplicacion ¢:R/2nz—U tal que g=gqgon. Si T,
es la topologia cociente en R/27z se tiene:
a) q:(R/2nz,+)— (U,.) es un isomorfismo.
b) ¢:(R/2xz,T,)— (U,T,) es un homemorfismo.
Demostracion:
1) Puesto que U=g((h,h+27t]), g es continua y (h,h+2n] un intervalo conexo de
R, se deduce que U es conexo.
2) Por el teorema anterior sabemos que 2z es el minimo nimero real positivo tal
que ¢’ =1. Como g es homomorfismo, sera también ¢*™ =1,VnE Z.
Veamos que Vr&kerg es r=2an:
Si no fuera r=2sn se tendria que 2an<r<2ma(n+1). Si llamamos s=r-2an, se

i 2mni

tendrd que O<r-2an<2x—0<s<2mx, y €' = =e" ™ =¢"=1, lo cual

contradice la afirmacion de que es 2m el minimo nUmero real positivo tal que
2

e(s+2:m)i

verifica ¢’™ = g(2)=1. Por consiguiente es kerg=27Z .

3) De la descomposicién canonica del epimorfismo g:R— U obtenemos el
homomorfismo ¢ :(R/2xnZ,+)— (U,.) tal que g=gq.n, cumpliendo que:

3.a) ¢ es continua, pues si G ET,, entonces g'(G)ET,, es decir n”'(¢"'(G)) ET,.
Por definicion de topologia cociente q"(G)ETn, lo que prueba que ¢ es continua.
3.b) Como [0,27] es compacto en R, n es continua y I’l([O,2ﬂ'])=R/2Jl’Z, se

deduce que R/2xZ es T, —compacto .
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3.c) Como una aplicacion continua y biyectiva de un espacio topoldgico compacto
en un espacio topoldgico de Hausdorff es un homeomorfismo, podemos afirmar que
la aplicacién q:(R/2xZ,T,)— (U,T,) es homeomorfismo.
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