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Espacios Proyectivos

0. Resumen

Si se define en un espacio vectorial de dimensidon n+1 sobre un cuerpo k a la
izquierda, una relacion de proyectividad entre sus vectores, que sea de equivalencia
Yy que por consiguiente parta al conjunto de los vectores del espacio en clases o
punto proyectivos, formando cada una de estas clases la recta vectorial que definen
los vectores proporcionales entre si, nos encontramos con un espacio cociente de
puntos proyectivos que es lo que denominamos espacio proyectivo sobre el espacio
vectorial dado.

En el conjunto de las partes del espacio proyectivo definimos también la relacién de
dependencia lineal proyectiva y la aplicacidon de linealizacion entre las partes, lo
cual desembocard en el concepto de variedad lineal proyectiva. Y en este conjunto
de las variedades lineales proyectivas podemos definir leyes internas de union,
interseccion y suma de variedades lineales proyectivas de forma que nos
encontramos con un reticulo que resulta ser isomorfo al reticulo modular,
complementario y atomico de las variedades lineales vectoriales construidas sobre
el espacio base de dimensiéon n+1.

En el reticulo modular de las variedades lineales proyectivas la dimensién de cada
variedad es una unidad menor que la dimensiéon de la variedad lineal vectorial
asociada, por lo que los puntos proyectivos, con dimensién cero, construidos como
conjuntos de vectores entre si proporcionales, se corresponden con rectas
vectoriales, variedades de dimension 1. Asimismo, las rectas proyectivas, de
dimension 1, son correspondientes con planos vectoriales, de dimension 2, y asi
sucesivamente, hasta el conjunto total de puntos proyectivos, de dimensién n,
como correspondiente al espacio vectorial asociado, de n+1 dimensiones.

En este trabajo se propone una construccion axiomatica del espacio proyectivo, de
las variedades lineales proyectivas, de sus relaciones de dualidad y de
complementariedad hasta llegar a establecer la configuracion de (n+2)-vertice y el
concepto de coordenadas proyectivas.

1. La relacion de dependencia lineal proyectiva

Definicion 1:

Dado un espacio vectorial (Vm’k) de dimension n+1, definido a la izquierda sobre el

cuerpo k, definimos una relacion entre sus vectores a fin de partir el espacio en
clases:
Vi, yeV,, {0}, IRy < IJaeck-{0}/y=ax

n
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Es decir, un vector X esta relacionado con otro vector y si existe un elemento «
no nulo del cuerpo de definiciéon del espacio que permite obtener y al multiplicarlo
por X por la izquierda.

Teorema 1

La relacion R anterior es una relacidon de equivalencia, esto es, es reflexiva,
simétrica y transitiva.

Demostracion:

1) VxeV

n

{03 ek/X =15 = XR% = R reflexiva

Asi pues, la relacidon R es reflexiva, simétrica y transitiva. Se trata de una relacién
de equivalencia, y, como tal, parte al espacio sobre el que esta definida en clases
de equivalencia, estando constituida cada clase por todos los vectores equivalentes
entre si.

Definicion 2

Cada una de las clases de equivalencia, [Fc], esta formada por todos los vectores
equivalentes entre si y se denomina punto proyectivo. El conjunto cociente

P= (Vn+l - {O})/R

es el conjunto de todas las clases de equivalencia, esto es, de todos los puntos
proyectivos.

Cada uno de los vectores x eV, —{O} es un representante de un determinado

n+l

punto proyectivo [Fc] .

Si consideramos el conjunto P = (V,Hl —{0})/R de los puntos proyectivos del espacio

y el algebra de Boole de sus partes, p(P), podemos definir una relacién de

dependencia lineal, dl, en su contexto, que llamamos relacidon de dependencia lineal
proyectiva.

Definicion 3

VA,B e p(P), AdIB < V[i]e 4,9, ]...[p.]e B/1¥=ay, +..+ a5, a ck-{0}
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Es decir: A depende linealmente de B sii para cualquier punto proyectivo de A
existen puntos proyectivos de B cuyos representantes vectoriales verifican la
relacion vectorial antedicha.

Vemos que en esta definicidn usamos un representante determinado, x, del punto
proyectivo [)?] y también representantes determinados, y,, de los puntos [)7,.]. Es
conveniente probar que no importa qué representante se tome para cada punto.

Veamos para ello el siguiente teorema.
Teorema 2

La definicion de dependencia lineal proyectiva no depende de los representantes
elegidos para cada punto.

Demostracion:

Sean X'c[x] ¥, €[7.], tales que remnm <k -0}
Vi'= mi'yismEk_{O}

X = iaifi, a, k- {0}:> m¥'= iai.mi_l.}; = X'= i(m.ai.ml._l).j/;
i=1

i=l1 i=1

,i=1...,r

Es decir, si X = Zr:al.j/i, a, € k—{0} entonces también ¥'= i.a;.y;, a ek —1{0}
i=1 i=1

Siendo ¥'e[¥] ¥, €[]

Teorema 3

VA,B,C € p(P),se verifica una propiedad de inclusién y otra de transitividad de la
relacion de dependencia lineal proyectiva:

1) AcB= Adl B
2) AdlB A BdlIC= AdIC
Demostracion:

- Lo Adl A
1) Es obvio, pues V[x]e 4, Hlek—{O}/l.x=x:>AdlA:>{ B:AdlB
cC

2) Adi B=Vieliled, A5]..[5,]eB. 3a.na ck-{0}/5=Ya 5, 7 <[5]
i=1

BdlC=vye[pleB, Az)..[5]eC. 3h.b ck-{05=30b5,. 7 <[z ]
j=1
de lo cual:

Viel¥led, = iai.jdijzji = i(iaid,,}zj = AdlC

i=1 =1 j=1\i=1
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Definicion 4
Se llama espacio proyectivo sobre V,,;, al par (P,dl) formado por el conjunto P de

los puntos proyectivos de V,.;, y la relacion, d/, de dependencia lineal proyectiva:

V. —10
Esp _proyectivo = (%{},dl j

Definicion 5

Una parte, A, de los puntos del espacio proyectivo P se dice que es linealmente
dependiente sii existe al menos un punto en 4 que de depende linealmente de los
restantes puntos de 4.

VAe p(P), Ald < 3[x]e 4/[%]dl 4[]

Diremos que una parte de P es linealmente independiente si no es linealmente
dependiente:
VA e p(P), Alind < no(41d)

Teorema 4:

Si una parte 4 de P es linealmente dependiente, entonces existen puntos de 4 con
representantes vectoriales linealmente dependientes. O sea:

Ald =3 ][5 e 4,30,...0, ck-{0}/pX +...+ 0%, =0

(siendo X ; € [)?]], j=L...,u)
Demostracion:
Es inmediato, pues:
VAe p(P), Ald < Jx]e A/[3]dl A-[}] = F=aF +..+a i, <

S¥-af—.—ax =03, ek—{O}/Zu:(pk)?k =0
k=1

Corolario:

Una parte 4 de P es linealmente independiente, sii para todo conjunto de puntos de
A, {[fl],...,[)_c'u]}, sus representantes vectoriales respectivos son linealmente
independientes. O sea:

Alind > V{7 ]..[5, e 4, 0% +.+9% =00 =..=¢, =0

(siendo X, € [)?j], j=L..,u)
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2. Las variedades lineales proyectivas

De lo anterior podemos observar que para cualquier parte A€ p(P)de puntos
proyectivos siempre hay puntos del espacio P que dependen linealmente de A4.

Podemos definir, una aplicacién que haga corresponder a cada parte el conjunto de
los puntos proyectivos que dependen linealmente de ella.
Definicion 6:
Definimos la aplicacién de linealizacion L : p(P) — p(P) de la siguiente forma:
VA e p(P), L(4) = {[¥]e P/[x]dl 4}
La imagen, L(A4), se llama variedad lineal proyectiva engendrada por 4.

A es el sistema de generadores de L(4).

Representaremos por I'(P) al conjunto de las variedades lineales proyectivas de P.

Al conjunto vacio, ¢, se le puede considerar una variedad lineal proyectiva
engendrada por si mismo. O sea, ¢ € ['(P).

Teorema 5:

1) Si 4 es el sistema de generadores de L(A), entonces 4 < L(A).
2) Si Ac B, entonces L(A) < L(B).
3) Si Ae'(P),entonces A= L(A).
Demostracién:
1) Trivialmente, pues los puntos de A dependen linealmente de A.
2) También es trivial, pues si A esta contenida en B los puntos que dependen
linealmente de de A dependen también linealmente de B.

3) Si A es variedad lineal proyectiva engendrada por si misma, el conjunto de
generadores coincide con la variedad.

Definicion 7:
Se llama aplicacién natural a h:V,,, — {0}—) P, definida por la condicion de que

viel -0}, h@@) =[]

n

Esto es, la aplicacion tal que a cada vector no nulo del espacio le corresponde el
punto proyectivo del cual es representante.

Matematica, Fisica, Astronomia, casanchi.com diciembre, 2009 5




Espacios Proyectivos Carlos S. Chinea

Teorema 6:

Sies I'(V ,,) el conjunto de las variedades lineales vectoriales de V,

y I'(P) el

n+l 7

conjunto de las variedades lineales proyectivas de P, se verifica:

1) VA e p(P), K" (L(A)u{0}eT(¥,.,)

2) VM eT(V,,)), h(M —{0}) e(P)

Demostracion:

1)

2)

Para probar que h*I(L(A))u{O} es una variedad lineal vectorial, hemos de

probar que toda combinacion lineal de vectores de la misma es también un
vector de la variedad. Se trata de probar, en definitiva, que si un vector, X,

es combinacién lineal de elementos de 4 '(L(4))U{0}, entonces X es
elemento de &' (L(A4))U{0}. O sea,

X=Zrl¢>,~>?j, con ¥, € ™ (L(A) U {0}, j=1..r = ¥ eh™(L(4)) U {0}

j=1
- si X,=0,j=1..r, entonces ¥ =0= X h"'(L(4)) U {0}
- si x;#0,j=1,.,r, entonces [fche L(A),j=1.,r= [)?]eL(A) , por
tanto, ¥ € h™'(L(4))w {0}

Para probar que h(M—{O}) e I'(P) basta probar que coincide con la
variedad lineal proyectiva que engendra: h(M —{0}) =L(h(M — {0})).

Como A(M —{0}) c L(h(M —{0})) solo es necesario probar la inclusién
contraria, o sea, L(h(M —{0})) c h(M—{O}) , para lo cual, veamos que todo
punto [)?] que pertenezca a la variedad lineal proyectiva L(h(M—{O})) ha de
pertenecer también al conjunto de generadores A(M —{0}):

v[&]e L(aM o). [&]dl n(v - {0} = % = 9,5, [%,] € (M — {0)),
k=0
cong, #0,k=1,..,s =>X, € Uk], k=1,..,s,y,€M- {O}:> X, =my,m #0=

= 7= pm5, = %M =[5]e h(M - {0)
=1

De lo anterior se tiene que, para un espacio vectorial V,+; y su espacio proyectivo
asociado P, la imagen natural de una variedad lineal vectorial sin el vector nulo es
una variedad lineal proyectiva de P, y al revés, la imagen reciproca de una
variedad lineal proyectiva es, junto con el vector nulo, una variedad lineal vectorial
de V,+; . La pregunta inmediata que nos hacemos es si es posible establecer alguna
correspondencia entre las variedades lineales vectoriales y las variedades lineales
proyectivas. Podemos, efectivamente, hacerlo mediante la aplicacion natural 4 en la
forma que se muestra en el siguiente teorema.
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Teorema 7:

La aplicacién @ :T'(V ,,) > I'(P) definida por
@, si M = {0}
VM el'(V,,),®M)= )
h(M —{0)), si M # {0}
es una aplicacion biyectiva.
Demostracion:

Para probar que ®es biyectiva hemos de probar que es sobreyectiva (toda
variedad lineal proyectiva L(A) es imagen por @ de alguna variedad lineal vectorial

M) y también es inyectiva (la imagen inversa por®'de cualquier variedad lineal
proyectiva es una sola variedad lineal vectorial).

- Es sobreyectiva:

VL(4) e T(P),307(L(4)) eT(V, )/ D(D ' (L(A)) = L(A), ya que
O (L(A)) = h™(L(A))w{0}eT(¥,,,), por el teorema 6.

- Es inyectiva:

Hemos de probar que VO(M) e '(P), ®'®(M)=M y como es
O'O(M)=h"'h(M —{0}), equivale a probar que h~'h(M —{0}) = M —{0}.
Como siempre M —{0}c h"'h(M —{0}), solo hemos de probar la inclusion
contraria, es decir h™'h(M —{0}) ¢ M —{0}:

Vieh ' (M -{0) = [¥]le (M -{0) = FpeM {0}/ ¥ =my,m#0=
=XieM-{0}

Veamos a continuaciéon el comportamiento de esta aplicacidon biyectiva entre las
variedades del espacio vectorial y las variedades de su espacio proyectivo asociado,
frente a las operaciones con variedades lineales proyectivas. Es conveniente saber
si es estable respecto a las operaciones internas en I'(P) a fin de establecer si es o

no un isomorfismo entre las variedades lineales vectoriales y las variedades lineales
proyectivas. Hemos de precisar, para ello, las operaciones basicas de interseccion y
suma de variedades lineales proyectivas.

Teorema 8:

La interseccion de dos variedades lineales proyectivas es también una variedad
lineal proyectiva:

VA, 4, eT(P), 4 " 4, e T(P)

Demostracion:
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Si llamamos L(4, N A4,) a la variedad lineal proyectiva engendrada por la
interseccion 4, N A4,, se cumple que 4 N A4, < L(A4, N 4,), puesto que 4, N A4, es el
conjunto generador de la variedad.

Si probamos que también se verifica la inclusion L(4, N A4,) < 4, "N A,habremos
probado que 4 N A4, =L(4 NA4,)el'(P):

V[x]e L(4, ~ 4) = [¥]dl 4 ~ 4, = [¥]dI 4 ~[3]dl 4, = ([]dl A A 4, €T(P)) A
A([X]dl 4, A 4, eT(P))= [¥]e 4 A [5]e 4, = [¥]e 4, N 4,

Definicion 8:

Se define la suma de variedades lineales proyectivas como la minima variedad
lineal proyectiva que contenga a su uniodn, esto es, la interseccion de todas las
variedades lineales proyectivas que contengan a la unién de ambas:

VA, A4, eT(P), A + A, = (WA eT(P)/ 4 U 4, c A}

Teorema 9:

La suma de dos variedades lineales proyectivas es la variedad lineal proyectiva
engendrada por su unidn:

VA,A4,€T(P), A+ A, =L(4 U A4,)
Demostracion:

Veamos que se cumple la doble inclusién:

- Si L(4, U A4,) es una variedad lineal proyectiva engendrada por 4, U 4, y
sabemos, por definicién, que la suma 4, + 4, es la intersecciéon de todas estas
variedades, se tiene que A4, + 4, < L(4, U 4,)

- Por otra parte, si es 4, + 4,una variedad lineal proyectiva (aunque sea la
minima) engendrada por A4, U A4, , debe cumplirse que A4, U A4, < 4, + A,, por lo

que, por el teorema 5, es L(4, U A4,) < L(4, + 4,) = 4, + A4,, pues la variedad
engendrada por una variedad es ella misma.

A+ A, S L(4 U A,

= L(A4,VA)=A4+A4,
L4, v 4)c 4+ 4,

Esta propiedad se cumple también en las variedades lineales vectoriales:

VM, M, eV,

n+l2

LM, OM,)=M,+M,

Teorema 10:
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La aplicacién biyectiva @ es estable para la interseccién y suma de variedades
lineales proyectivas:

1) ®(M, "M,) =D(M,) "D(M,)
2) DM, +M,)=Dd(M,)+D(M,)

Demostracion:

1) Veamos que se verifica la doble inclusion:

a

v[¥]e d(M, " M,) = [¥]e[h(M, A" M,)-{0}]]= X e M, A M, - {0}=
=>xeM, —{0}rieM,-{0}=[x]e (M) {0} A [X]e h(M,)- {0} =
= [¥]e (h(M,) = {0) N (h(M,) - 10}) = [X] e D(M)) N D(M,)

de lo cual: (M, "M,) c D(M))ND(M,)

b)
V[i]e oM, nd(M,) = [¥]e (W(M,) - {0}) N (h(M,) - {o}) =

Sielp)/yeM, -{0hayeM, -{0}=5ecM -{0}r
AXeM,-{0}=>FeM,-{0)nM,-{0)=>FeM, " M,)-{0}=
= [¥]e h(M, " M,) - {0} = [¥]e (M, " M,)
resultando que: ®(M,) N DO(M,) c D(M, " M,)
y de la doble inclusién: ®(M, "M,)=D(M,)ND(M,)
2) Veamos que también se verifica la doble inclusidn:
a)

v[x]e ®(M, + M,)= [¥]e h(M, + M,)-{0} = [%]e H(L(M, L M)))- {0} =

SXeLM,UM)-{0j=>5%=Y m3 /5 eM, OM,=
j=1

= 5= Y m 5, 5 |e hi, o M,) - {0y =[5 e L(r(M, U M) - 0) =

= [¥]e L(h(M, - {0h U h(M, - {0h) = [F]e L(@M ) L d(M,))=
= [x]e ©(M,) + D(M,)

obteniéndose: ®(M, +M,) c D(M,)+D(M,)

b)
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V[z]le o(M,) + D(M,) = [5]e L(d(M,) U D(M,))=

= [¥]e L((h(M,) - {0h) U (h(M)) - {0)) = % = imkfck /% ]e h(M,)) - {0} v

k=1

v ¥ ]en,)-{0}= % =ZS:mk)?k/)?k eM,-{0}vi eM -{0}=

k=1
= 5= Y m /5, e (M, — ) UM, —{0) = F = m,F, /5, € (M, UM, - {0) =
k=1 1

= ¥ e LM, UM, —{0}) = [¥]e (LM, UM,)- {o}T = [¥]e h(M, + M,) - {0})=
= [¥]e ®(M, + M,)
siendo, por tanto: ®(M,)+D(M,) c O(M, +M,)

y de la doble inclusién: ®(M,+M,)=D(M,)+D(M,)

Vemos, en definitiva, que la aplicacion biyectiva @ es un isomorfismo covariante
entre el conjunto de las variedades lineales vectoriales y el conjunto de las
variedades lineales proyectivas, por lo que la estructura de uno se puede trasladar
al otro. Como el conjunto de las variedades lineales vectoriales, dotado de la
interseccién y la suma de variedades, es un reticulo modular, complementario y
atéomico, concluimos también que el conjunto de las variedades lineales proyectivas
tiene esa misma estructura, es decir, se trata de un reticulo modular,
complementario y atémico.

A las partes o subconjuntos de este reticulo se acostumbra a denominar figuras.
Definicion 9:

Se define la dimensidén de una variedad lineal proyectiva, A, como la dimension de
la variedad lineal vectorial imagen por @ disminuida en una unidad:

VA eT(P), dim(4) = dim(® ' (A4)) -1

Los puntos proyectivos tienen dimensién cero, ya que se corresponden con rectas
del espacio vectorial, es decir:

dim[%] = dim(®' (recta))-1=1-1=0
Se denominan rectas proyectivas y planos bidimensionales proyectivos, a las
variedades lineales proyectivas de dimensién 1 y 2, respectivamente. Las restantes
variedades lineales proyectivas son de dimensiéon r>2. De ellas, las variedades de
dimension n-1 se denominan hiperplanos proyectivos. Los planos bidimensionales
proyectivos serian, en un espacio proyectivo tridimensional, también hiperplanos
proyectivos (de dimension 2).

La Unica variedad lineal proyectiva de dimensiéon n es el espacio P de los puntos
proyectivos:

dim P = dim(®'(P))-1=dim(V,,,)-1=n+1-1=n

La dimensién de la variedad vacia, o, es -1:
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¢ e T(P), dim(g) = dim(® ' (¢)) -1 =dim{0}-1=0-1=-1

Teorema 11:

La suma de las dimensiones de dos variedades lineales proyectivas es igual a la
dimensidn de su suma mas la dimensién de su interseccion:

VA,B el'(P), dimA4+dim B =dim(4 + B) +dim(4 N B)
Demostracion:

Puesto que sabemos que en las variedades lineales vectoriales se verifica la
propiedad analoga:

VM,,M,el'(V,,,), dmM,+dimM, =dim(M, + M,) + dim(M, " M,)
la usaremos para probar la propiedad en las variedades lineales proyectivas:

VA,B eT'(P), dim A+ dimB = dim(® ' (4)) -1+ dim(d ' (B)) 1=

= dim(®(4) + ©7'(B)) + dim(@~ (4) D (B)) - 2 = dim(® ' (4 + B) ) +
+dim(®"'(4 " B))-2 = dim(®' (4 + B))—1 + dim(® ' (4~ B))—1=
=dim(4 + B) + dim(4 N B)

Definicion 10:

Se denomina base de una variedad lineal proyectiva A, a un sistema generador de
A que sea linealmente independiente.

B basede Ael'(P)< A=L(B)A Blind.

Teorema 12:

1) Si {{V, 1[5 ]...[5,]} es base de 4 € T'(P), entonces {V,,¥,....¥,} es base de ®'(A)..

2) Todas las bases de una variedad lineal proyectiva tienen el mismo nimero de
puntos, igual a su dimensién aumentada en una unidad.

Demostracion:
1) {[\70],[\71],...,[\7”]} base de 4 < {\70,\71,...,\7”}son l.independ y generan ®'(4) <

& {9,,9,,....,7, Jes una base de ®'(A).

2) Es evidente, de 1), pues sabemos que todas las bases de una variedad lineal
vectorial tienen el mismo nimero de vectores.
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3. Rectas, planos e hiperplanos proyectivos.

Teorema 13:

1) Por dos puntos del espacio proyectivo P pasa una y solo una recta
proyectiva.

2) Por tres puntos del espacio proyectivo P pasa un y solo un plano proyectivo
bidimensional.

3) Si dos puntos proyectivos dados pertenecen un cierto plano proyectivo, la
recta que contiene a ambos puntos estd contenida en el plano proyectivo.

Demostracion:

1) Sean los puntos proyectivos [)?], [}] Sabemos que la minima variedad lineal
proyectiva engendrada por la unién de ampos puntos es
[¥]+[7]= L(¥]U[¥]). Si r es una recta que pasa por ambos puntos, sera
[¥]+[7]c r, v, por otra parte, como la dimensién de r es 1, seré r la
minima variedad lineal proyectiva que contiene a ambos puntos, luego

rc [¥]+[¥]. En definitiva, es r = [¥]+[¥]

2) Igual que en el apartado anterior: [¥]|+[y]+[Z]= L(Z]U[p]U[Z]), v
cualquier plano pl que contenga a los tres puntos sera pl c [fc + ”]+ [E]
Por consiguiente, se tiene que pl = [)?]+ [)7]+ [E]

3) En el plano proyectivo pl =[x]+[¥]+[Z], Ia recta r =[%]+[¥] es parte de
dicho plano, luego r = [¥]+[¥]< pl.

Teorema 14:

1) Todo hiperplano proyectivo es una variedad lineal proyectiva maximal.
2) H eT'(P) es hiperplano proyectivo<> 3f eV, f #0/H = {[)?]/f(x) = O}

Demostracion:

1) Si H es hiperplano proyectivo del espacio proyectivo P, es dimH =n—1. Si
hay una variedad Ael'(P)/Hc A=dimA>dmH =>dimAd=n= A=P.

Por consiguiente H es variedad lineal proyectiva maximal.
2) Veamos la doble implicacidén, probando que se verifica en cada uno de los
dos sentidos:

a) H eT'(P) es hiperplano proyectivo=>3f eV, , f#0/H = {[)?]/f(x) = O}
dimH =n-1andimP=n=Jy|e P/[y|le H A P= L(F]oH)=[y]+ H
Puesto que V,,, =®(P), seré: V, =@ ([j]+ H)="'(3)+ 0" (H)

Es decir, V., = L(3)®®'(H), por lo cual se tiene que:

vzel

n+l2

Z=a.y+X,siendoack xe®'(H)
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Sea la aplicacion lineal f eV, f#0/f(Z)= f(a.y+X)=a. Se ha de
cumplir que f(ay+X)=a.f(O)+f(X)=a= f(¥)=1A f(X)=0. Esto
quiere decir que Vx e ®'(H), f(¥)=0, o bien:
H ={[z)/ f(3)=0}
(la ecuacion f(x)=0 se denomina ecuacion del hiperplano H)
b) If € V;;l, f#0/H = {[?c]/f(x) =O}:>H e I'(P) es hiperplano proyectivo.

eV, /f(y)=03yeV, ./ f(y)=1
Sea N =ker f yllamemos M =L(y)@®ker f .Veamos que M =V, :
VeV, . fE-f@Oy) =@ -fEf)=/E)-f(Z)=0=
=>zZz-f(Z)y=xeker f=Z=f(Z)y+XAf(Z)eknXeker =
=>z=f2Z)y+xAf(E@)yel()AxeN=zZzel())@N=M

En definitiva, V,,, c M = M =V, por lo cual, siendo dim/V,, =n+1.y

n+l = n+l
Asimismo dim L(y)=1, se deduce que dim N =dim ker f =n, por lo
cual:
dim H = dim(® ' (ker £))=n—-1= H ={[%]/ f(%) =0} es hiperplano

proyectivo.

Corolario:
1) La interseccidon de una recta proyectiva con un hiperplano proyectivo
que no la contiene es un Unico punto proyectivo.
2) La interseccion de dos rectas proyectivas distintas es un Unico punto
proyectivo.
3) La interseccién de un plano proyectivo bidimensional con un
hiperplano proyectivo que no lo contiene es una recta proyectiva.
4) La interseccion de dos hiperplanos proyectivos distintos del espacio
proyectivo tridimensional es una recta proyectiva.
Demostracion:

1) Sila recta no estd incluida en el hiperplano, la uniéon de ambas variedades
genera el espacio proyectivo:

reH=LruvH)=P=>r+H=P=dim(r+ H)=dimP =n
por tanto:

dim(r N H) = dimr + dim H —dim(r + H)=1+n—(1+n)=0

lo que indica que la variedad interseccion es un punto proyectivo. Esto es, se
trata de que
roH={z]/Z=aX,%eV,,}

podemos encontrar una expresién, a partir de la recta que pasa por dos
puntos proyectivos, [v][i]:

r=[l+[il H={]/fG =0}=rnH={z)/zecd ' [#]+[i) » £() =0}

es decir:
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roH ={Z]/Z=av +bii n f(Z)=0}={Z]/ f(Z) = f(a¥ +bii)=0}=

=>{Z]/ fG)=af@)+b.flii)=0}=rnH = {[2]/2 =a(v- S Ef; .ﬁ)}
u
=rnH ={[z]/z _ai, i=v-1W e VM}
f @)

2) Esigual que el apartado anterior:
n#EnL=>Lnun)=A=>n+rn=4A=dim(r,+r)=dim4 =2

dim(r, " r) =dim#z +dimr, —dim(r, +7,) =1+1-2=0

3) Sea uplano proyectivo bidimensional y sea H hiperplano tal que & H :
UuzeH=>LWuuVH)=P=u+H=P=dim(u+H)=dimP=n
dim(unH)=dimuy+dimH —dim(u+ H)=2+n—-(1+n)=1

lo que indica que la interseccién, al tener dimensién 1, es una recta
proyectiva.

4) Sila dimensién del espacio proyectivo P es 3, los hiperplanos del mismo
seran las variedades de dimensién 2.

H #H,= L(H, UH,)=P= H,+H,=P=dimH, + H,)=dimP =3

dim(H, N H,) = dim H, + dim H, — dim(H, + H,) =2 +2-3 =1

4. El isomorfismo de dualidad:
4.1. Sobre el espacio dual:

Repasando algo sobre los espacios duales: sobre todo espacio vectorial
(V,.,,k) sabemos que puede definirse el espacio de las formas lineales de V ,, en k,

n+l2

o0 espacio dual (V’:l,k). En estos espacios sabemos también que podemos

n

establecer un isomorfismo de ortogonalidad, w, entre el reticulo de las variedades

lineales vectoriales de (V ,,k) y el reticulo de las variedades lineales duales de
(V,.,,k), por el cual a cada variedad vectorial M se le hace corresponder la

variedad lineal dual, w(M), ortogonal a la misma:

+1°

w:T(V, ) >TV,.), YMeTW,,),wM)el(V,,)
siendo
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w(M)={f eV, /| f(F)=0,vieM|

n+l

resultando ser w un isomorfismo contravariante entre ambos reticulos:

{W(Ml +M,)=w(M,)"w(M,)

VM .M, el'(V,,),

WM, NM,)=w(M,)+w(M,)

también, continuando con el repaso, mencionemos la relacion entre la dimensién de
la variedad ortogonal w(M) del espacio dual y la dimensién de la variedad M dada
del espacio vectorial, cuando nos encontramos en espacios finitodimensionales:

dimw(M) = dimV,,, —dim M [4.1_1]

+1
4.2. El esquema general de los cuatro reticulos:

De lo visto hasta aqui podemos resumir que conocemos la existencia de dos
espacios vectoriales, cada uno con su espacio proyectivo asociado:

a) (V

' .1,k) , espacio vectorial a la izquierda sobre el cuero k, en el que, al definir la
relacion R (definicion 1) hacemos la particidn en clases que originan la aparicion del
espacio proyectivo asociado P, y cuyos reticulos de variedades admiten un

isomorfismo covariante que hemos representado por @ :

OM, +M,)=D(M,)+D(M,)

¢ (M, M) = D(M,) \D(M,)

+1

)>T(P)/ VM, M, eT(V,,), {

b) Igualmente, para el espacio dual (V*

n+l?

k) podemos considerar su espacio

proyectivo asociado P*, y el correspondiente isomorfismo covariante @ entre sus

reticulos:
. . . . . O M + M= (M)+D (M.
@ :F(V,MHF(P)/VMI,Mzer(VM),{ (M, + M) =D M)+ O (M)
O (M, "M,))=® (M)n® (M,)

Se tiene, en definitiva, el siguiente esquema:

d

T(P) T(P*)
b’ .4
Tl > T

W

. . * — . . . .
El isomorfismo d =® o wo ®~' se denomina isomorfismo de dualidad.
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Teorema 15:

1) La dualidad, d, es un isomorfismo contravariante entre los reticulos I'(P)
y[(P*).
2) Si AeI'(P), entonces dim(d(A4))=n—dimA4—-1

Demostracion:

- - * —_ - -7
1) Es inmediato, pues al ser d =® owo®™', se trata de la composicién de un
isomorfismo covariante con otro contravariante.
Es decir, se verifica que:

d(A+ B)=d(A)d(B)eT(P¥)

d(A B)=d(A)+d(B) T (P¥)

2) Se trata de probar que dim(d(A4))=n—dimA4—1.
Por ser d(A4)=®*owo®'(4) =D * ow(CI)‘1 (A))= O * (w(CI)‘1 (A))), se tiene:
dim(®'(4))=dim 4 +1
dim(w(®'(4)))= dimV,

VA,BeT(P), {

- —dim(®7(4))=n+1- (dim 4 +1) = n — dim 4
dim(® * (w(@ ' (4))) = dim(w(® ' (4)))~1=n - dim 41

Teorema 16:

1) la imagen dual del vacio es todo el espacio proyectivo dual:
d(¢)=P*
2) La figura dual de un punto es un hiperplano:
V[x]eT(P), d([3])) = H* e T(P¥)
3) La figura dual de un hiperplano es un punto:
VH eT(P), d(H) =[x *|e T(P¥)
Demostracién:

1) Veamos que, efectivamente, la imagen dual del conjunto vacio es todo el
espacio proyectivo dual:

a) peT(P)=> D '(p)=0el(V,,,), por la definicién del isomorfismo ® dada
en el enunciado del Teorema 7.
b) 0eV,,,, w(0)=V,,,, pues Vf ¥,

+1°

f(0)=0= few0)=V,

+1

cw(0),
de donde se deduce que w(0) =V

+1*

c) Finalmente, ® * (V)= P*, por la definicién del isomorfismo ®*,

En definitiva, d(¢)=®*owo® ()= P*

2) Veamos ahora que la imagen de un punto del espacio proyectivo P es un
hiperplano de su espacio proyectivo dual P*:

v[x]e [(P), dim[3]=0= &' ([x]) = ax e V., /dim(ax) = 1
w® ={f eV | f(®)=0}=M*eV,

n+l 1

y por [4.1_1] es:
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dimM*=dimV,,, —dim(ax)=n+1-1=n
Finalmente, es ®* (M) = H* e T'(P*)= dim H*=dimM *-1=n-1
Por lo cual se tiene, en definitiva, que:
d([¥]) = @ *owo ®'([¥]) = H */dim H* = n —1 = H * hiperplano

3) Para ver que la imagen de un hiperplano es un punto del espacio proyectivo
dual, observemos:

H c I'(P), hiperplano = dimH =n—1

Y por el teorema 15_2): dimd(H)=n—dimH —-1l=n—-(n-1)-1=0
O sea, dimd(H) =0= d(H) es punto proyectivo del espacio dual.

Definicion 12:

Dada una familia de hiperplanos del reticulo de las variedades proyectivas del
espacio proyectivo P, se dice que esta familia es linealmente independiente si la
familia de sus respectivos puntos duales en el reticulo de las variedades lineales
proyectivas del espacio dual proyectivo P* es linealmente independiente:
SiH,cP/dimH;=n—-1Ad(H,)=h, e P*,j=1,..,r entonces se define:
{H,....H }c T(P)lind < {h,....h } < T(P*) lind
Un hiperplano H del reticulo de variedades lineales proyectivas del espacio
proyectivo P se dice que es combinacién lineal de una familia de hiperplanos de
dicho reticulo, si su imagen dual en el reticulo de las variedades lineales proyectivas

del espacio dual proyectivo P* depende linealmente de la familia de los puntos
duales de dicha familia de hiperplanos en P*.

SiH,cP/dmH, =n—-1Ad(H,)=h;e P*,j=1,..,r Ah=d(H),dmH =n-1
Hcom lin_de{H,,..,H }< hcom lin_delh,..h}

Entenderemos como rango de una familia de hiperplanos del reticulo de variedades
lineales proyectivas de P al rango de la familia de puntos duales en el espacio
proyectivo dual P*:

SiH, gP/dimHj :n—l/\d(Hj)=hj e P* j=1,..,r,
rango{H,,...H, }=rangolh,....h}
Definicion 13:

Un haz lineal de hiperplanos proyectivos es una familia de hiperplanos cuya imagen
dual es una recta proyectiva.

Como una recta proyectiva es un subespacio del correspondiente espacio proyectivo
dual P*, un haz lineal de hiperplanos proyectivos es un subespacio del espacio
proyectivo P.

Teorema 17:
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Dos planos distintos cualesquiera de un haz lineal de hiperplanos proyectivos
constituyen una base del mismo.

F haz _lin_hiperp=> VH,,H, € F/ H, # H,, {H,,H, } base de F
Demostracién:

- Si los dos planos son distintos, H, # H,, seran trivialmente linealmente

independientes, es decir, los puntos de uno no dependen de los puntos del
otro.

- Veamos que son generadores del espacio I constituido por el haz lineal de
los hiperplanos:

d(H))=[n] d(H,)=[h,], siendo, por teorema 10, [i ], [1,] puntos del
espacio dual P*. Sea la recta que contiene a ambos puntos:

1= ]+[n]

Como, por definicion de haz lineal de hiperplanos, la imagen dual de cualquiera de
los planos estd en una misma recta, se entiende que el punto imagen dual de
cualquier otro hiperplano del haz se encuentra en la recta anterior:

VH eT(P),d(H)=[h]<[r], es decir [n]dI [r]=[h]+][h,], o sea:

Vi ffoeVoal felh) fieln) 1o elh]l 30,0, €k, f=o fivo. /=

= f comb_lineal delf,, f,}= [R]com _lineal _de {[h1 ] [hz]}

por la definicion 12, [k]com _lineal _de {h][h,]}=

= ®'[h]com _lineal _de {CI)_1 [ ][, ]}:> Hcom _lineal _de{H,,H,}

En definitiva todo hiperplano del haz es combinacién lineal de los dos planos
indicados, por lo que ambos planos generan a todo el haz lineal de hiperplanos.

Como también son ambos entre si independientes, constituyen una base de dicho
espacio proyectivo.

Teorema 18:

Dado un haz lineal de hiperplanos proyectivos, F, cualquier punto [Z] del espacio P
esta contenido en un hiperplano del haz.

Demostracion:

Sea {HDHZ} una base del espacio F. Si el punto proyectivo [Z] pertenece a alguno
de ellos, ya esta probado. Caso contrario se tiene

H, ={x]e P/ f,(¥)=0}, H,={F]eP/f,(¥)=0jr[Z]¢ H, r[Z]e H,=
= f(E)20A £,(2)20
Cualquier otro hiperplano, H, del haz, serd H ={[%]/ f(¥)=0}, cumpliéndose

ademads, por ser combinacion lineal de los elementos de la base, que
dp,p, €k, f=¢.f+,.f,,0sea H={[f]/¢lﬁ()?)+¢2]2()?)=0}
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Si elegimos ¢, = 1,(2), ¢, =—f,(Z), se obtiene el plano
H, = {z) £,G)-£ ()~ £,(E) /,(3) =0}
el cual, obviamente, contiene al punto [E], pues f(2)= f,(2)./,(2)- f,(2)f,(2)=0

En definitiva, para cualquier punto del espacio proyectivo, siempre existe un
hiperplano al cual pertenece.

Teorema 19:

Para toda variedad lineal vectorial M €I'(V,,,), se verifica que la imagen dual del

conjunto de hiperplanos de P que contienen a ®(M) es ® *(w(M)), cumpliéndose

la relacion
dimO(M)+dimd*(w(M))=n—1
Demostracion:

Sea F una familia de hiperplanos del espacio proyectivo P(V,+;) que contienen a la
variedad ®(M)

VHeF,OQM)c H=d(®M))cd(H)=d(DPM))cd(F)
Como, por el teorema 16_3), la imagen dual de un hiperplano es un punto de P¥,

se tiene que
VHeF,O(H)=hed(®(M))=d(F)cd(®M))

En definitiva, es d(F)=d(®(M)), y como por definicion del isomorfismo de
dualidad d, es d(D®(M))=D*owod ' (D(M))=D*ow(M), se verifica lo indicado
en el enunciado:

d(F)=®*ow(M)
Para ver la expresion de la dimensidn, tenemos en cuenta el teorema 15_2):

dim(d(®(M)))=n—dimd(M) -1

O sea,
dim(d *ow(M)) = dim(d(®(M))) = n —dim DM ) -1
de donde:
dim ®(M ) + dim(P *ow(M)) =n -1
Corolario:

1) La familia F' de hiperplanos proyectivos que contienen a una variedad lineal
proyectiva®(M)de dimension n-2 es un haz lineal de hiperplanos

proyectivos.
2) Si n=3, entonces los hiperplanos proyectivos del haz lineal que contiene a la
variedad ®(M) de dimensién n-2 se cortan en una recta proyectiva.

3) Si n=2, entonces los hiperplanos proyectivos del haz lineal que contiene a la
variedad ®(M) de dimensidn n-2 se cortan en un punto proyectivo.

Demostracion:

1) Si dim(®(M))=n-2, se tiene que:
dim®(M) +dim(® *ow(M))=n—-1= dim(@*ew(M))=n—-1-(n-2)=1
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Es decir: dimd(F)=dim®*ow(M)=1= d(F) es recta proyectiva,
de donde se deduce que F es un haz lineal de hiperplanos proyectivos,
por definicion.
2) Es trivial, pues en este caso dim(®(M))=3-2=1, con lo que es ®(M) una

recta proyectiva que esta contenida en el haz de hiperplanos. Es decir, todos
los hiperplanos del haz se cortan en dicha recta proyectiva.

3) En este caso los hiperplanos H del haz son realmente rectas proyectivas,
pues dimH =2-1=1, es decir, se trata de un haz de rectas proyectivas que
se cortan en ®(M), y como dim(®(M))=2-2=0, todo el haz se corta en
un punto.

Definicion 14:

1)VA, B e I'(P), se denomina proyeccion de A desde B (o bien proyeccién de B
desde A) a la variedad suma A+ B e '(P)

2) VA,B €I'(P),se denomina seccién o corte de A por B (o bien seccién o corte

de B por A) a la variedad interseccion ANBel(P).

3) Dos variedades proyectivas se dicen incidentes si una de ella esta contenida
en la otra:

A,BeTl'(P)incidentes < Ac Bv Bc A4
Definicion 15:

Consideremos una variedad lineal proyectiva A del espacio proyectivo P(V,,)
asociado al espacio vectorial V , . Se denomina radiacion de base A al espacio

proyectivo asociado al espacio vectorial cociente V,Hl/d)*l(A), esto es, al espacio

P(VA (A)j

siendo ® el isomorfismo covariante entre el reticulo I'(V, ,,) de las variedades

lineales vectoriales y el reticulo I'(P)de las variedades lineales proyectivas del
correspondiente espacio proyectivo asociado.

Por abreviar, representaremos por P/ A a la radiacion de base A en el espacio
proyectivo P.

Teorema 22:

Los puntos del espacio proyectivo P/ A son las variedades lineales proyectivas
[¥]+4/[%]e 4, o sea, son las proyecciones de A desde los puntos [x]e P tales que
[¥]e 4.

Demostracion:

VZeV, /O (A)=P/A, Z=%+D ' (A)/3g®'(4)= D(E)=[Z]=0F+D'(4) =
= D(X)+ DD (A) =D(X)+ A=[X|+ Ae P/ An[¥]e 4
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Es inmediato que los puntos X, +®7'(A4), k =1,...,r son linealmente independientes

sii lo son también los puntos imagenes [)?k]+ A k=1,..r

Teorema 23:

1) La figura dual, d(P/A), de las radiaciones de base A, es el conjunto F de
todos los hiperplanos de d(A4).

2) El conjunto de todos los hiperplanos de una variedad lineal de un espacio
proyectivo es también un espacio proyectivo.

Demostracion:

1) Veamos en primer lugar que la imagen dual de cada punto de la radiacion es un
hiperplano de d(A4). A continuaciéon veremos que todo hiperplano de d(A4) es la

imagen dual de un punto de la radiacion.

Sea G, =d([x]+ A)=d([x])nd(4)la imagen dual de un punto de la radiacion. Se
tiene obviamente que G, < d(4).Veamos su dimensién.

Por ser [)?] un punto del espacio proyectivo P, su dual es un hiperplano de P*, por
lo que dimd([)?]) =n—-1. Llamemos dimd(A4)=n,.

Se tiene, por el teorema 11:

dimG, = dim(d([x]) » d(4)) = dimd ([%]) + dimd (4) — dim(d ([¥]) + d(4)) =
=n—1+n,—dimd([¥]n 4)=n—1+n, —dimd(p)=n—1+n, - dim P* =
=n—-1+n,-n=n,-1

En definitiva:

dimG, =n, -1 )
G cdAn . = G, hiperplano de d(A)
; dimd(A4)=n,

Ya sabemos que la imagen dual de cada punto de la radiacién es un hiperplano de
d(A), falta solo establecer que todos los hiperplanos de d(A) son imagenes duales
de puntos de la radiacién:

VG c d(A)/ G hiperplano ded(A) = dimG =dimd(4) —1

Sea U=d'(G)=dU)=Gcd(A)= Ac U . Por el teorema 15_2):
dim(U) =n—dimd(U)-1=n-dimG—1=n—(dim(d(4)—1)-1=n—-dimd(4) =
=n—(n—dimA-1)=dim4+1=J¥]eU/[i]e A= U =[5]+ 4

2) Es obvio, una vez probado lo anterior.
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5. Variedades lineales proyectivas complementarias
Definicién 16:

Se dice que las variedades lineales proyectivas del espacio proyectivo P son
complementarias si la variedad suma coincide con P y son disjuntas

A complementaria de B<> A+ B=PAANB=¢

Teorema 24:

Si una variedad A es complementaria de otra variedad B se verifica que la radiaciéon
P/B es la proyeccién del conjunto de los puntos de A desde B.

Demostracion:

Proyeccion de [¥, | 4 desde B: [, |+ B

Proyeccion de todos los puntos de A desde B: G, = {[)?]+B/[)?]e A}

Radiacion de base B: P/B={[x]+B/[¥]¢ B}

Se trata de probar que G, =P/B

Puesto que A(N\B=¢ =G, < P/B. Hemos de probar, por tanto, que P/BcG,,
es decir, se trata de probar que V([x]+B)eP/B= ([x]+B)eG,, o, lo que es lo
mismo, que si [¥]¢ B = [¥]e 4

Para ello vamos a probar que dim(([x]+B)n4)=0, es decir, que (([¥]+B)4) es
un punto. Como ese punto pertenece a A y no pertenece B (por ser Ay B

disjuntos), solo puede ser [)?]e A, con lo que terminaria la prueba.
Veamos:

dim([x]+ B) = dim[%]+ dim B — dim([¥]~ B) = diim[¥]+ dim B — dim(#) = 0+ dim B — (1) =
=dimB+1

dim([¥]+ B)+dim 4 = dim B+ 1+ dim 4 = dim(4 + B) —dim(4 N B) +1 = dim P — dim(¢) + 1 = n
dim[([¥]+ B)+ 4] = dim([x]+ B)+ dim 4 —dim|[([¥]+ B) 4] = dim B +1+ dim 4 — dim|([¥]+ B)n 4] =
=n-— dim[([)?]+ B)m A]

dim[([x]+ B) 4] = n—dim|[([¥]+ B)+ A]=n—dimP=n-n=0

gue termina la demostracion.

Definicion 17:

Dadas dos variedades lineales proyectivas, A y B, entre si complementarias, se
denomina perspectividad entre A y P/B a la aplicacion biyectiva Q: 44— P/B
definida por la condicién:

v[x]e 4, Q%] =[]+ B

Variedades lineales proyectivas asociadas a un par de variedades lineales
proyectivas complementarias.
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Sean 4,Bel'(P), A+ B=P A AN B=¢. Se tienen las conexiones siguientes:

1) Por el isomorfismo de dualidad:
- Para las variedades complementarias, A y B:
d:A—> A4A* d:B—>B*

- Para las radiaciones de base A y de base B:

d:B/ ) aiBg (B

2) Por la biseccion de perspectividad:

- Para las variedades y radiaciones:

Q:A—>% Q:B—)%

- Para las variedades y radiaciones duales:

A ST

3) Por composicion de las aplicaciones anteriores:

- Desde variedades a radiaciones duales:

dA:Aa(%)* dB:B%(%)*

- Desde radiaciones a variedades duales:

d::%%A* d;:%%B*

En resumen, se tienen los esquemas:
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Q
A ~P/B B Q | pa
%, ’ 4 \\ 4
K\\‘ / /
i '\ i
d 4 d d W d
d? ’><N j H\\
A | | x W
/ d\ﬂ 'l_l;]/ \"'}fx
v ¢ N ¥ Y . 9
A or! to {P.l'rB}* B* o > {PL_&)*
adad'  g=da’ &= da
Teorema 25:

Todas las variedades que aparecen en los diagramas anteriores tienen la misma
dimensioén.

Demostracion:

dim A* =dim A, pues ambas variedades duales son isomorfas por el isomorfismo
contravariante de dualidad. d: 4 —> A* d:B—>B*

dim(P/B)=dimA, pues existe entre ambos conjuntos la biseccién de
i . P . P
perspectividad. Q.A—)é Q.B—)/61

dim(P/B)*=dim(P/B)=dim 4,
dualidad.

por ser variedades duales, isomorfas por

La dimension, en definitiva, coincide con la dimensién de la variedad A que aparece
en el diagrama (todo ello siempre que se cumpla la hipétesis de que ambas
variedades lineales proyectivas, A y B, con complementarias).
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6. Configuraciones, r-vértices, coordenadas proyectivas:
Definicién 18:
Una configuracion es un conjunto finito de variedades lineales proyectivas

CONF ={4" |, k=0l.on-1, m, =12,..s,

cuyas dimensiones son k£=0,,2,..,n—1. y son tales que el numero @, de
variedades lineales proyectivas A,’;l_ de la configuraciéon incidentes con las

variedades lineales proyectivas A;f; depende Unicamente de i y de .

La matriz ((/’,,) se llama matriz de incidencias de la configuracion.

Definicién 19:
Un ejemplo de configuracién en un espacio proyectivo P es lo que se denomina un
r-vértice d-dimensional, que es un conjunto de r puntos proyectivos que engendran

una variedad lineal proyectiva d dimensional, y tal que d+1 de estos puntos son
linealmente independientes.

Teorema 26:

Sea el espacio proyectivo P sobre el espacio vectorial a izquierda (V,Hl,k), y
consideremos un (n+2)-vértice n-dimensional:

R, ={% %] [% HyD

Siempre es posible encontrar un representante z, € [?ci], i=0,1,...,n de cada uno de
los n+1 primeros puntos, de modo que

Zy+Z 4. 42, =i e[y]

estando todos estos representantes univocamente determinados salvo un factor a
la izquierda.

Demostracion:

Si son [)? ],[)?1],...,[)?”] linealmente independientes en P, entonces los representantes

Zy,Z;».--,Z, seran linealmente independientes en (V k), gue es de dimension ntl,

n+1°

es decir, si afladimos otro vector, ya el conjunto sera linealmente dependiente:

ZysZ,0enn 2,00 lin. depend= 3@, € k,i =0,1,...n/ 9,2, + 0.7, +...+ ,Z, =ii €[]
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y como z, e[?cl.], i=0l..,n—>¢.z e[?cl.], i=0,1,..,n, queda probado el enunciado
del teorema, esto es, que existen representantes vectoriales de los n+/ puntos del
(n+2)-vertice cuya suma pertenece al punto [ﬁ]

Tal suma queda determinada salvo una constante de proporcionalidad a izquierda,
pues si ii € [ii| también m.ii [ii], m € k — {0}

El punto [ﬁ] se llama punto unidad del (n+2)-vértice n dimensional.

Definicion 20:

El conjunto de los vectores obtenidos en el teorema 26, {20,21,...,2 } se denomina

n

base normalizada respecto al punto [L? ]

El punto [ii]| se llama punto unidad del (n+2)-vértice n dimensional.

Teorema 27:

Sea el espacio proyectivo P sobre el espacio vectorial V,
vertice n dimensional R = {[)?0], [)?ll,[)?n],D]}

Consideremos el espacio vectorial M,+; cuyos vectores son las matrices de una sola
fila y nt+I columnas sobre el cuerpo k£ a izquierda, y consideremos el espacio
proyectivo Py; sobre M, ;:

a izquierda y el (n+2)-

M, = {(ao,al,...,an),...,(7/0,}/1,...,}/n),...}, P, = {[(ao,al,...,an)],...,[(}/0,7/1,...,7/”)],...}

Entonces, el (n+2)-vértice R, define una biyeccidn entre el espacio proyectivo Py el
espacio proyectivo Py, de modo que a cada punto de P le corresponde un Unico
punto de Py, vy viceversa, y queda definida por la condicién
f:P—>P,
vxler, f(x])=[(x,.xs..x,)]€ B,, siendo [¥]=[x,Z,+xZ +...+x,Z]

Demostracion:

Cada punto proyectivo, [(,uo,,ul,...,,un)] del espacio Py, tiene por representantes a

las matrices proporcionales a.(, t4,,..., i4,), a € k—{O}.
Para probar que la relacion f indicada en el enunciado es una biyeccion hemos de
probar que es aplicacion, que es sobreyectiva, y que es inyectiva.
- f es aplicaciéon. Para ello basta probar que ningin punto proyectivo de P
tiene mds de una imagen en Py, es decir, que si
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F(xD=1[(xysx,50x, )| € P, siendo % =x,.2, + x,.Z, +...+ x, .2, €[¥]

n n
también se obtendra la misma imagen para otro representante X' del mismo
punto proyectivo original:

F(xD =1[(xysx,5nx, )] € P, siendo %'=aX = a(x,z, + %2, +...+ x,.Z,) € [X]
pues la matriz que define la expresion del vector X' es a.(x,,x,,...,x,), que
es también representante del mismo punto imagen:

a(Xy,X,5e..sX,) € [(xo,xl,...,xn)]
- es sobreyectiva. Se trata ahora de probar que para cualquier punto

proyectivo del espacio P, existe un punto proyectivo del espacio P del cual es
imagen por f, lo cual es trivial:

V[(xg, %, ) € Py 3X = x,2) + X2, + o+ x,Z, = f([X]) = [(xg0 2,505 x, )]
- es inyectiva. Veamos que si dos puntos proyectivos de P tienen la misma
imagen en P); entonces ambos puntos de P coinciden:

[ttt )= (v )] = ] = [7]

[(egserrs0, )] = [0, )] =
(sl el )
v(yoa ’yn)e[(VO’ ’vn)]%(yoa""yn)E[(”O""’un)]
VX =xZ, +...+x,Z, eli] >xe[f] -
*{v;:yozo+...+yngn cfloyela]” i]=Dv]

—>

Teorema 28:

Para todo automorfismo interior ¢ en el cuerpo k se verifica que:
1) Y[(cgsx, e Bys 0l(xg.ennx, )€ Py
2) V(x5 )€ Py 03050, )]= [0, )]

Demostracion:

1) v[(xoa X )]EP <:"a(xo’ ’x) [(xoa X )la;to(xoa X )EMm
V(hy».. ,h)e(p[(xo, x,)b (goesh,)) = ola (xo,---,xn))—(p(axo,...,axn)=
= (p(axy),....p(ax,)) e M, = [(p(ax,).... p(ax,))]|= p[(xy....x, )] € P,
2) Y(lyseshty) € @(5gsx, )} (igsenisht,) = pla (g x,))s @ # 0= (hye.nsh, ) =
= pla(xgnsx,)) = Plaxgse.,ax, ) = (9(axy),.... p(ax,)) =
= (p(@). (X)), (@) (x,)) = P(@) (@(x,),.... 0(x,)) =
= 9(@)(x,.. %, ) € [p(xp,...,x, )]
por lo que se verifica la inclusidon (o[(xo,...,x )] [(xo, WX, )]
V(ho, oh) €@y X)) (yseiish,) = a(xgsennx, ) @ # 0= (s, ) =
= (5 p(5,) = (@95 a0(,)) =
= (00 (@) (X, )srrs 00 (@)0(x)) = 9l (@)% 0™ (@), )=
= (P((/7_1 (a)(xo,“"xn))e (0[(x0a---’xn]

y también se verifica la inclusién [(p(xo,...,xn)]g (p[(xo,...,xn)]
en definitiva, de la doble inclusién:

[@(xoa X )] (/’[(xoa X )]
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Por el teorema 27 sabemos que el (n+2)-vértice R, define una biyeccidn entre el
espacio proyectivo P y el espacio proyectivo Py, de modo que a cada punto de P le
corresponde un unico punto de Py, vy viceversa, y queda definida por
f:P—>P,
vxle P, f([x])=[(xpxs..x,)] € By, siendo [¥]=[x,2, + X2 +...+x,Z,]

Veamos a continuacién el teorema que nos va a permitir establecer el concepto de
coordenadas proyectivas.

Teorema 29:

El (n+2)-vértice R, n dimensional Rv={[\70],...,[17n];[ﬁ]} hace corresponder a cada
punto proyectivo [X]e P el conjunto ¢(f[%]), siendo f([%])=[(x,.....x, )] € P, donde
X =XV, +..+x,V,, estando la base {V,...,7,} normalizada respecto de ieli] y
siendo ¢ un automorfismo interior de k, que recorre el conjunto ¢, de todos los

automorfismos interiores de k para los diferentes representantes vectoriales de [ﬁ]
Demostracion:

Sea (xo,...,xn) la matriz de las coordenadas de x en la base {\70,...,17”} normalizada

respecto de i € [ii], 0 sea ii =V, +...+7,.

f:P—>P,, V[i]eP, f(x])=[(xmx,)]
Sea (yo,...,yn) la matriz de las coordenadas de X en la base {Vvo,...,ﬂ/n}

normalizada respecto de ii'e[ii], o sea ii'= W, +...+ W, .

g:P—>p,, V[ile P, g(Z])=[(vy,)]
Expresion de X en ambas bases: X =x,V, +...4+X,V,, X=Y,W,+...+ Y W,
Como u y u' son representantes del mismo punto proyectivo [ﬁ] se tiene que
existe la relacién u'=au, a#0, por lo cual wy+...+w, =ay, +...+av, >

—->w, =av,, i=0,..,n, por tanto:

- = - - - _ -1
X=XV +...+X,V, = y,av,+..+y,av, >y, =x,a

1

, 1=0,..,n,y se tiene:
:afl(axiafl):aflgo(xi), siendo ¢(x,)=a 'x,a el automorfismo interior
en k inducido por a.

g:P— P, V[ile P, g(Z)=[(rp. 3, )= e 0(x,)... a0z, )|=

= a7 @) 0 ) |= (@ s 02, D= [P0 003, ] = (s, )] =

= ()

Para cualquier otro representante u'"e [ﬁ], se tendria u"=bu, b+#0, y si lamamos

-l -
y,=a axa

& al automorfismo inducido por b, 5(x,)=b"x,b, se tiene:
h:P—P,, VEle P, h(%])=[(zyr.2,)]= 675 ). 5(x,))]=

=67 () e, D] =[Sy Yorors S )] = [0y x,)] = S[(Xg )] =
= (%))
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Es decir, para cada constante de proporcionalidad entre los representantes
vectoriales del punto origen del n+2 vértice hay un automormismo interior distinto,

lo que nos indica que se recorre el conjunto ¢, todos los automorfismos interiores
de k para los diferentes representantes vectoriales.

Corolario:

1) Si el cuerpo k es conmutativo, el (n+2)-vértice R, define una biseccién Unica
f:P—P,, denomindndose al punto f([¥])=[(x,....x,)] matriz de Ias
coordenadas proyectivas del punto [)?] en el sistema referencial proyectivo R,.

2) Si el cuerpo k£ no es conmutativo, el (n+2)-vértice R, define para cada [)?]e Pun

punto imagen que queda determinado salvo un automorfismo interior de &, por lo
que no define un sistema de referencia proyectivo. Para que lo sea, es necesario

fijar también un Unico representante ﬁe[ﬁ] del punto unidad, con lo que el par
(R,,u) si seria un sistema de referencia proyectivo sobre un cuerpo no
conmutativo.

Demostracion:

Es obvio, del teorema 29.
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