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Espacios Proyectivos 
 
 
 
 
 
 

0. Resumen 
 
Si se define en un espacio vectorial de dimensión n+1 sobre un cuerpo k a la 
izquierda, una relación de proyectividad entre sus vectores, que sea de equivalencia 
y que por consiguiente parta al conjunto de los vectores del espacio en clases o 
punto proyectivos, formando cada una de estas clases la recta vectorial que definen 
los vectores proporcionales entre sí, nos encontramos con un espacio cociente de 
puntos proyectivos que es lo que denominamos espacio proyectivo sobre el espacio 
vectorial dado. 
 
En el conjunto de las partes del espacio proyectivo definimos también la relación de 
dependencia lineal proyectiva y la aplicación de linealización entre las partes, lo 
cual  desembocará en el concepto de variedad lineal proyectiva. Y en este conjunto 
de las variedades lineales proyectivas podemos definir leyes internas de unión, 
intersección y suma de variedades lineales proyectivas de forma que nos 
encontramos con un retículo que resulta ser isomorfo al retículo modular, 
complementario y atómico de las variedades lineales vectoriales construidas sobre 
el espacio base de dimensión n+1. 
 
En el retículo modular de las variedades lineales proyectivas la dimensión de cada 
variedad es una unidad menor que la dimensión de la variedad lineal vectorial 
asociada, por lo que los puntos proyectivos, con dimensión cero, construidos como 
conjuntos de vectores entre sí proporcionales, se corresponden con rectas 
vectoriales, variedades de dimensión 1. Asimismo, las rectas proyectivas, de 
dimensión 1, son correspondientes con planos vectoriales, de dimensión 2, y así 
sucesivamente, hasta el conjunto total de puntos proyectivos, de dimensión n, 
como correspondiente al espacio vectorial asociado, de n+1 dimensiones. 
 
En este trabajo se propone una construcción axiomática del  espacio proyectivo, de 
las variedades lineales proyectivas, de sus relaciones de dualidad y de 
complementariedad hasta llegar a establecer la configuración de (n+2)-vertice y el 
concepto de coordenadas proyectivas. 
 
 
 

1. La relación de dependencia lineal proyectiva 
 
 
Definición 1: 
 
Dado un espacio vectorial ( )kVn ,1+  de dimensión n+1, definido a la izquierda sobre el 

cuerpo k, definimos una relación entre sus vectores a fin de partir el espacio en 
clases: 

{ } { } xykyRxVyx n
rrrrrr ./0,0, 1 αα =−∈∃⇔−∈∀ +  
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Es decir, un vector xr  está relacionado con otro vector yr  si existe un elemento α  

no nulo del cuerpo de definición del espacio que permite obtener yr  al multiplicarlo 

por xr  por la izquierda. 
 
 
Teorema 1 
 
La relación R anterior es una relación de equivalencia, esto es, es reflexiva, 
simétrica y transitiva. 
 
Demostración: 
 
1) { } reflexivaRxRxxxkVx n ⇒⇒=∈∃−∈∀ +

rrrrr .1/1,01  

 

2) { } { } xRyyxkyxxykyRx rrrrrrrrrr
⇒=−∈∃⇒=⇒=−∈∃⇒ −−− 111 /0/0 ααααα  

 

3)
{ }
{ } transitivaRzRxxxz

yzkzRy
xykyRx

⇒⇒==⇒
=−∈∃⇒
=−∈∃⇒ rrrrr

rrrr

rrrr

).().(
/0
/0

βααβ
ββ
αα

 

 
Así pues, la relación R es reflexiva, simétrica y transitiva. Se trata de una relación 
de equivalencia, y, como tal, parte al espacio sobre el que está definida en clases 
de equivalencia, estando constituida cada clase por todos los vectores equivalentes 
entre sí. 
 
 
 
 
Definición 2 
 
Cada una de las clases de equivalencia, [ ]xr , está formada por todos los vectores 
equivalentes entre sí y se denomina punto proyectivo. El conjunto cociente 
 

{ }( ) RVP n 01 −= +  

 
es el conjunto de todas las clases de equivalencia, esto es, de todos los puntos 
proyectivos. 
 
Cada uno de los vectores { }01 −∈ +nVxr  es un representante de un determinado 

punto proyectivo [ ]xr . 
 
Si consideramos el conjunto { }( ) RVP n 01 −= +  de los puntos proyectivos del espacio 

y el álgebra de Boole de sus partes, )(Pp , podemos definir una relación de 

dependencia lineal, dl, en su contexto, que llamamos relación de dependencia lineal 
proyectiva. 
 
 
Definición 3 
 

[ ] [ ] [ ] { }0,.../,...,,),(, 111 −∈++=∈∃∈∀⇔∈∀ kayayaxByyAxAdlBPpBA irrr
rrrrrr
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Es decir: A depende linealmente de B sii para cualquier punto proyectivo de A 
existen puntos proyectivos de B cuyos representantes vectoriales verifican la 
relación vectorial antedicha. 
 
Vemos que en esta definición usamos un representante determinado, xr , del punto 
proyectivo [ ]xr  y también representantes determinados, iyr , de los puntos [ ]iyr . Es 

conveniente probar que no importa qué representante se tome para cada punto. 
Veamos para ello el siguiente teorema. 
 
 
Teorema 2 
 
La definición de dependencia lineal proyectiva no depende de los representantes 
elegidos para cada punto. 
 
Demostración: 
 

Sean [ ] [ ]ii yyxx rrrr
∈∈ ',' , tales que 

{ }
{ } ri

kmymy
kmxmx

iii

,...,1,
0,.'

0,.'
=

−∈=
−∈=

rr

rr

 

{ } ∑∑∑
=

−

=

−−

=

=⇒=⇒−∈=
r

i
iii

r

i
iiii

r

i
ii ymamxymaxmkayax

1

'1

1

'11

1
)...('..'.0, rrrrrr

 

 

Es decir, si  { }0,
1

−∈=∑
=

kayax i

r

i
ii
rr

  entonces también { }0,..' '

1

'' −∈=∑
=

kayax i

r

i
ii
rr

 

Siendo [ ] [ ]ii yyxx rrrr
∈∈ ','  

 
 
Teorema 3 
 

),(,, PpCBA ∈∀ se verifica  una propiedad de inclusión y otra de transitividad de la 
relación de dependencia lineal proyectiva: 

 
1) BdlABA ⇒⊆  
 
2) CdlACdlBBdlA ⇒∧  
 

Demostración: 
 

1) Es obvio, pues [ ] { } dlBA
BA
AdlA

AdlAxxkAx ⇒




⊆
⇒⇒=−∈∃∈∀

rrr .1/01,  

2) [ ] [ ] [ ] { } [ ]∑
=

∈=−∈∃∈∃∈∈∀⇒
r

i
iiiirri yyyaxkaaByyAxxBdlA

1
1 ,./0,...,,,...,, rrrrrrrr

 

    [ ] [ ] [ ] { } [ ]jj

s

j
jjssi zzzbykbbCzzByyCdlB rrrrrrrr

∈=−∈∃∈∃∈∈∀⇒ ∑
=

,./0,...,,,...,,
1

1  

de lo cual: 

[ ] ∑ ∑ ∑∑
= = ==

⇒







==∈∈∀

r

i

s

j
j

r

i
ijiij

s

j
iji CdlAzdazdaxAxx

1 1 11
.., rrrrr
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Definición 4 
 
Se llama espacio proyectivo sobre Vn+1, al par ( )dlP,  formado por el conjunto P de 
los puntos proyectivos de Vn+1, y la relación, dl, de dependencia lineal proyectiva: 
 

{ }






 −

≡ + dl
R

VproyectivoEsp n ,
0

_ 1  

 
 
Definición 5 
 
Una parte, A, de los puntos del espacio proyectivo P se dice que es linealmente 
dependiente sii existe al menos un punto en A que de depende linealmente de los 
restantes puntos de A. 

[ ] [ ] [ ]xAdlxAxldAPpA rrr
−∈∃⇔∈∀ /),(  

 
Diremos que una parte de P es linealmente independiente si no es linealmente 
dependiente: 

( )ldAnolindAPpA ⇔∈∀ ),(  
 
 
Teorema 4: 
 
Si una parte A de P es linealmente dependiente, entonces existen puntos de A con 
representantes vectoriales linealmente dependientes. O sea: 
 

[ ] [ ] { }
[ ] ),...,1,(

0.../0,...,,,..., 1111

ujxxsiendo
xxkAxxldA

jj

uuuu

=∈
=++−∈∃∈∃⇒

rr

rrrr ϕϕϕϕ
 

 
Demostración: 
 
Es inmediato, pues: 
 

[ ] [ ] [ ]

{ } ∑
=

=−∈∃⇔=−−−⇔

⇔++=⇔−∈∃⇔∈∀
u

k
kkkvv

vv

xkxxx

xxxxAdlxAxldAPpA

1
11

11

0/00...

.../),(
rrrr

rrrrrr

ϕϕαα

αα
 

 
Corolario: 
 
Una parte A de P es linealmente independiente, sii para todo conjunto de puntos de 
A, [ ] [ ]{ }υxx rr ,...,1 , sus representantes vectoriales respectivos son linealmente 

independientes. O sea: 
 

[ ] [ ]{ }
[ ] ),...,1,(

0...0...,,..., 1111

ujxxsiendo
xxAxxlindA

jj

uuu

=∈
===⇒=++∈∀⇒

rr

rrrr
υϕϕϕϕ
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2. Las variedades lineales proyectivas 

 
De lo anterior podemos observar que para cualquier parte )(PpA∈ de puntos 

proyectivos siempre hay puntos del espacio P  que dependen linealmente de A . 
Podemos definir, una aplicación que haga corresponder a cada parte el conjunto de 
los puntos proyectivos que dependen linealmente de ella. 
 
Definición 6: 
 
Definimos la aplicación de linealización )()(: PpPpL →  de la siguiente forma: 
 

[ ] [ ]{ }AdlxPxALPpA rr /)(),( ∈=∈∀  
 

La imagen, L(A), se llama variedad lineal proyectiva engendrada por A. 
 
A es el sistema de generadores de L(A). 
 
Representaremos por )(PΓ al conjunto de las variedades lineales proyectivas de P. 
 
Al conjunto vacío, φ , se le puede considerar una variedad lineal proyectiva 

engendrada por sí mismo. O sea, ).(PΓ∈φ  
 
 
Teorema 5: 
 

1) Si A es el sistema de generadores de L(A), entonces ).(ALA ⊆  

2) Si BA ⊆ , entonces ).()( BLAL ⊆  

3) Si )(PA Γ∈ , entonces  ).(ALA =  
 
Demostración: 
 

1) Trivialmente, pues los puntos de A dependen linealmente de A. 
2) También es trivial, pues si A está contenida en B los puntos que dependen 

linealmente de de A dependen también linealmente de B. 
3) Si A es variedad lineal proyectiva engendrada por si misma, el conjunto de 

generadores coincide con la variedad. 
 
 
 
Definición 7: 
 
Se llama aplicación natural a { } PoVh n →−+1: , definida por la condición de que 

 
{ } [ ]xxhVx n

rrr
=−∈∀ + )(,01  

 
Esto es, la aplicación tal que a cada vector no nulo del espacio le corresponde el 
punto proyectivo del cual es representante. 
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Teorema 6: 
 
Si es )( 1+Γ nV  el conjunto de las variedades lineales vectoriales de 1+nV , y )(PΓ  el 

conjunto de las variedades lineales proyectivas de P, se verifica: 
 

1) { } )(0))((),( 1
1

+
− Γ∈∪∈∀ nVALhPpA  

 
2) { } )()0(),( 1 PMhVM n Γ∈−Γ∈∀ +  

 
Demostración: 
 

1) Para probar que { }0))((1 ∪− ALh  es una variedad lineal vectorial, hemos de 
probar que toda combinación lineal de vectores de la misma es también un 
vector de la variedad. Se trata de probar, en definitiva, que si un vector, xr , 

es combinación lineal de elementos de { }0))((1 ∪− ALh , entonces xr  es 

elemento de { }0))((1 ∪− ALh . O sea, 

 { } { }∑
=

−− ∪∈⇒=∪∈=
r

j
jjj ALhxrjALhxconxx

1

11 0))((,...,1,0))((, rrrr ϕ     

- si rjx j ,...,1,0 ==
r

, entonces { }0))((0 1 ∪∈⇒= − ALhxx rr
 

- si rjx j ,...,1,0 =≠
r

, entonces [ ] [ ] )(,...,1),( ALxrjALx j ∈⇒=∈
rr

, por 

tanto, { }0))((1 ∪∈ − ALhxr  
 

2) Para probar que { } )()0( PMh Γ∈− basta probar que coincide con la 

variedad lineal proyectiva que engendra:  { } { }))0(()0( −=− MhLMh . 
 

Como { } { }))0(()0( −⊆− MhLMh  solo es necesario probar la inclusión 

contraria, o sea, { } { })0())0(( −⊆− MhMhL , para lo cual, veamos que todo 

punto [ ]xr  que pertenezca a la variedad lineal proyectiva { }))0(( −MhL  ha de 

pertenecer también al conjunto de generadores { })0( −Mh : 

[ ] { } [ ] { } [ ] { }∑
=

−∈=⇒−−∈∀
s

k
kkk MhxxxMhdlxMhLx

0
),0(,)0()),0(( rrrrr ϕ  

[ ] { } ⇒≠=⇒−∈=∈⇒=≠ 0,0,,...,1,,...,1,0 kkkkkkkk mymxMyskyxskcon rrrrrϕ  

           [ ] { })0(
1

−∈⇒∈⇒=⇒ ∑
=

MhxMxymx
s

k
kkk

rrrr ϕ  

 
De lo anterior se tiene que, para un espacio vectorial Vn+1 y su espacio proyectivo 
asociado P, la imagen natural de una variedad lineal vectorial sin el vector nulo es 
una variedad lineal proyectiva de P, y al revés, la imagen recíproca  de una 
variedad lineal proyectiva es, junto con el vector nulo, una variedad lineal vectorial 
de Vn+1 . La pregunta inmediata que nos hacemos es si es posible establecer alguna 
correspondencia entre las variedades lineales vectoriales y las variedades lineales 
proyectivas. Podemos, efectivamente, hacerlo mediante la aplicación natural h en la 
forma que se muestra en el siguiente teorema. 
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Teorema 7: 
 
La aplicación )()(: 1 PVn Γ→ΓΦ +  definida por 

{ }
{ } { }




≠−
=

=ΦΓ∈∀ + 0),0(
0,

)(),( 1 MsiMh
Msi

MVM n

φ
 

es una aplicación biyectiva. 
 
Demostración: 
 
Para probar que Φ es biyectiva hemos de probar que es sobreyectiva (toda 
variedad lineal proyectiva L(A) es imagen por Φ de alguna variedad lineal vectorial 
M) y también es inyectiva (la imagen inversa por 1−Φ de cualquier variedad lineal 
proyectiva es una sola variedad lineal vectorial). 
 

- Es sobreyectiva: 
 

)())(((/)())((),()( 1
1

1 ALALVALPAL n =ΦΦΓ∈Φ∃Γ∈∀ −
+

− , ya que 

{ } )(0))(())(( 1
11

+
−− Γ∈∪=Φ nVALhAL , por el teorema 6. 

 
- Es inyectiva: 

 

Hemos de probar que MMPM =ΦΦΓ∈Φ∀ − )(),()( 1  y como es 

{ })0()( 11 −=ΦΦ −− MhhM , equivale a probar que { } { }0)0(1 −=−− MMhh . 

Como siempre { } { })0(0 1 −⊆− − MhhM , solo hemos de probar la inclusión 

contraria, es decir { } { }0)0(1 −⊆−− MMhh : 
 

{ } [ ] { } { }
{ }0

0,./0)0()0(1

−∈⇒
⇒≠=−∈∃⇒−∈⇒−∈∀ −

Mx
mymxMyMhxMhhx

r

rrrrr

 

 
 
Veamos a continuación el comportamiento de esta aplicación biyectiva entre las 
variedades del espacio vectorial y las variedades de su espacio proyectivo asociado, 
frente a las operaciones con variedades lineales proyectivas. Es conveniente saber 
si es estable respecto a las operaciones internas en )(PΓ a fin de establecer si es o 
no un isomorfismo entre las variedades lineales vectoriales y las variedades lineales 
proyectivas. Hemos de precisar, para ello, las operaciones básicas de intersección y 
suma de variedades lineales proyectivas. 
 
 
Teorema 8: 
 
La intersección de dos variedades lineales proyectivas es también una variedad 
lineal proyectiva: 
 

)(),(, 2121 PAAPAA Γ∈∩Γ∈∀  
 
Demostración: 
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Si llamamos )( 21 AAL ∩  a la variedad lineal proyectiva engendrada por la 

intersección 21 AA ∩ , se cumple que )( 2121 AALAA ∩⊆∩ , puesto que 21 AA ∩  es el 
conjunto generador de la variedad. 
 
Si probamos que también se verifica la inclusión  2121 )( AAAAL ∩⊆∩ habremos 

probado que )()( 2121 PAALAA Γ∈∩=∩ : 
 
[ ] [ ] [ ] [ ] [ ]( )
[ ]( ) [ ] [ ] [ ] 212122

11212121

)(
)()(

AAxAxAxPAAdlx
PAAdlxAdlxAdlxAAdlxAALx

∩∈⇒∈∧∈⇒Γ∈∧∧
∧Γ∈∧⇒∧⇒∩⇒∩∈∀

rrrr

rrrrr

 

 
 
Definición 8: 
 
Se define la suma de variedades lineales proyectivas como la mínima variedad 
lineal proyectiva que contenga a su unión, esto es, la intersección de todas las 
variedades lineales proyectivas que contengan a la unión de ambas: 
 

{ }AAAPAAAPAA ⊆∪Γ∈=+Γ∈∀ 212121 /)(),(, I  
 
 
Teorema 9: 
 
La suma de dos variedades lineales proyectivas es la variedad lineal proyectiva 
engendrada por su unión: 
 

)(),(, 212121 AALAAPAA ∪=+Γ∈∀  
Demostración: 
 
Veamos que se cumple la doble inclusión: 
 
- Si )( 21 AAL ∪ es una variedad lineal proyectiva engendrada por 21 AA ∪  y 

sabemos, por definición, que la suma 21 AA + es la intersección de todas estas 

variedades, se tiene que )( 2121 AALAA ∪⊆+  

- Por otra parte, si es 21 AA + una variedad lineal proyectiva (aunque sea la 

mínima) engendrada por 21 AA ∪ , debe cumplirse que 2121 AAAA +⊆∪ , por lo 

que, por el teorema 5, es 212121 )()( AAAALAAL +=+⊆∪ , pues la variedad 
engendrada por una variedad es ella misma. 
 

2121
2121

2121 )(
)(

(
AAAAL

AAAAL
AALAA

+=∪⇒




+⊆∪
∪⊆+

 

 
Esta propiedad se cumple también en las variedades lineales vectoriales: 
 

2121121 )(,, MMMMLVMM n +=∪∈∀ +  

 
 
 
 
Teorema 10: 
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La aplicación biyectiva Φ es estable para la intersección y suma de variedades 
lineales proyectivas: 

 
1) )()()( 2121 MMMM Φ∩Φ=∩Φ  

2) )()()( 2121 MMMM Φ+Φ=+Φ  
 
Demostración: 
 

1) Veamos que se verifica la doble inclusión: 
a) 

 

[ ] [ ] { }[ ] { }
{ } { } [ ] { } [ ] { }

[ ] { } { } [ ] )()()0)(()0)((
0)(0)(00
00)()(

2121

2121

212121

MMxMhMhx
MhxMhxMxMx
MMxMMhxMMx

Φ∩Φ∈⇒−∩−∈⇒
⇒−∈∧−∈⇒−∈∧−∈⇒
⇒−∩∈⇒−∩∈⇒∩Φ∈∀

rr

rrrr

rrr

 

 de lo cual: )()()( 2121 MMMM Φ∩Φ⊆∩Φ  
          b) 

            

[ ] [ ] { } { }
[ ] { } { } { }

{ } { } { } { }
[ ] { } [ ] )(0)(

0)()0()0(0
00)0/

))(()0)(()()(

2121

21212

121

2121

MMxMMhx
MMxMMxMx

MxMyMyyx
oMhMhxMMx

∩Φ∈⇒−∩∈⇒
⇒−∩∈⇒−∩−∈⇒−∈∧

∧−∈⇒−∈∧−∈∈⇒
⇒−∩−∈⇒Φ∩Φ∈∀

rr

rrr

rrrrr

rr

 

           resultando que: )()()( 2121 MMMM ∩Φ⊆Φ∩Φ  
 
           y de la doble inclusión: )()()( 2121 MMMM Φ∩Φ=∩Φ  
 

2) Veamos que también se verifica la doble inclusión: 
a)  

            

[ ] ( ) [ ] ( ) { } [ ] ( ) { }

{ }

[ ] { } [ ] { }( )⇒−∪∈⇒−∪∈=⇒

⇒∪∈=⇒−∪∈⇒

⇒−∪∈⇒−+∈⇒+Φ∈∀

∑

∑

=

=

0)(0)(/

/0)(

0)(0

21
1

21

1
2111

111111

MMhLxMMhxxmx

MMxxmxMMLx

MMLhxMMhxMMx

r

j
jjj

r

j
jjj

rrrr

rrrr

rrr

 

            
[ ] { } { }( ) [ ] ( )
[ ] )()(

)()()0()0(

21

2121

MMx
MMLxMhMhLx

Φ+Φ∈⇒
⇒Φ∪Φ∈⇒−∪−∈⇒

s

rr

 

            obteniéndose: )()()( 2121 MMMM Φ+Φ⊆+Φ  
            b)  
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[ ] [ ] ( )

[ ] { } { }( ) [ ] { }

[ ] { } { } { }

{ } { } { }

{ } [ ] { }( ) [ ] { }( )
[ ] ( )21

212121

1
212

1
1

1
1

12

1
1

11

2121

0)0)()0(

)0(/)0()0(/

00/0)(

0)(/)0)(()0)((

)()()()(

MMx
MMhxMMLhxMMLx

MMxxmxMMxxmx

MxMxxmxMhx

MhxxmxMhMhLx

MMLxMMx

s

k
kkk

s

k
kkk

k

s

k
kkkk

s

k
kkk

+Φ∈⇒
⇒−+∈⇒−∪∈⇒−∪∈⇒

⇒−∪∈=⇒−∪−∈=⇒

⇒−∈∨−∈=⇒−∈∨

∨−∈=⇒−∪−∈⇒

⇒Φ∪Φ∈⇒Φ+Φ∈∀

∑∑

∑

∑

==

=

=

r

rrr

rrrrrr

rrrrr

rrrr

rr

siendo, por tanto: )()()( 2121 MMMM +Φ⊆Φ+Φ  
 
          y de la doble inclusión: )()()( 2121 MMMM Φ+Φ=+Φ  
 
 
Vemos, en definitiva, que la aplicación biyectiva Φ  es un isomorfismo covariante 
entre el conjunto de las variedades lineales vectoriales y el conjunto de las 
variedades lineales proyectivas, por lo que la estructura de uno se puede trasladar 
al otro. Como el conjunto de las variedades lineales vectoriales, dotado de la 
intersección y la suma de variedades, es un retículo modular, complementario y 
atómico, concluimos también que el conjunto de las variedades lineales proyectivas 
tiene esa misma estructura, es decir, se trata de un retículo modular, 
complementario y atómico. 
 
A las partes o subconjuntos de este retículo se acostumbra a denominar figuras. 
 
Definición 9: 
 
Se define la dimensión de una variedad lineal proyectiva, A, como la dimensión de 
la variedad lineal vectorial imagen por Φ  disminuida en una unidad: 
 

1))(dim()dim(),( 1 −Φ=Γ∈∀ − AAPA  
 
Los puntos proyectivos tienen dimensión cero, ya que se corresponden con rectas 
del espacio vectorial, es decir:  
 

[ ] ( ) 0111)(dimdim 1 =−=−Φ= − rectaxr  
 
Se denominan rectas proyectivas y planos bidimensionales proyectivos, a las 
variedades lineales proyectivas de dimensión 1 y 2, respectivamente. Las restantes 
variedades lineales proyectivas son de dimensión r>2. De ellas, las variedades de 
dimensión n-1 se denominan hiperplanos proyectivos. Los planos bidimensionales 
proyectivos serían, en un espacio proyectivo tridimensional, también hiperplanos 
proyectivos (de dimension 2). 
 
La única variedad lineal proyectiva de dimensión n es el espacio P de los puntos 
proyectivos: 
 

nnVPP n =−+=−=−Φ= +
− 111)dim(1))(dim(dim 1

1  

 
La dimensión de la variedad vacía, Φ, es -1: 
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{ } 11010dim1))(dim()dim(),( 1 −=−=−=−Φ=Γ∈ − φφφ P  

 
 
Teorema 11: 
 
La suma de las dimensiones de dos variedades lineales proyectivas es igual a la 
dimensión de su suma más la dimensión de su intersección: 
 

)dim()dim(dimdim),(, BABABAPBA ∩++=+Γ∈∀  
 
Demostración: 
 
Puesto que sabemos que en las variedades lineales vectoriales se verifica la 
propiedad análoga:  
 

)dim()dim(dimdim),(, 212121121 MMMMMMVMM n ∩++=+Γ∈∀ +  

 
la usaremos para probar la propiedad en las variedades lineales proyectivas: 
 

( )
( ) ( ) ( )

)dim()dim(
1)(dim1)(dim2)(dim

)(dim2))()(dim())()(dim(
1))(dim(1))(dim(dimdim),(,

111

11111

11

BABA
BABABA

BABABA
BABAPBA

∩++=
=−∩Φ+−+Φ=−∩Φ+

++Φ=−Φ∩Φ+Φ+Φ=

=−Φ+−Φ=+Γ∈∀

−−−

−−−−−

−−

 

 
 
 
Definición 10: 
 
Se denomina base de una variedad lineal proyectiva A, a un sistema generador de 
A que sea linealmente independiente. 
 

B base de ⇔Γ∈ )(PA ..)( indlBBLA ∧=  
 
 
Teorema 12: 
 
1) Si [ ] [ ] [ ]{ }nvvv rrr ,...,, 10  es base de )(PA Γ∈ , entonces{ }nvvv rrr ,...,, 10  es base de ).(1 A−Φ . 

2) Todas las bases de una variedad lineal proyectiva tienen el mismo número de 
puntos, igual a su dimensión aumentada en una unidad. 
 
Demostración: 
 

1) [ ] [ ] [ ]{ }nvvv rrr ,...,, 10  base de { }nvvvA rrr ,...,, 10⇔ son l.independ y generan ⇔Φ− )(1 A  

{ }nvvv rrr ,...,, 10⇔ es una base de ).(1 A−Φ  

2) Es evidente, de 1), pues sabemos que todas las bases de una variedad lineal 
vectorial tienen el mismo número de vectores. 

 
 
 
 
 



Espacios Proyectivos                                                                                         Carlos S. Chinea 

Matemática, Física, Astronomía, casanchi.com                                            diciembre, 2009 12

 
 
 

3. Rectas, planos e hiperplanos proyectivos. 
 
 
Teorema 13: 
 

1) Por dos puntos del espacio proyectivo P pasa una y solo una recta 
proyectiva. 

2) Por tres puntos del espacio proyectivo P pasa un y solo un plano proyectivo 
bidimensional. 

3) Si dos puntos proyectivos dados pertenecen un cierto plano proyectivo, la 
recta que contiene a ambos puntos está contenida en el plano proyectivo. 

 
Demostración: 
 

1) Sean los puntos proyectivos [ ] [ ]yx rr , . Sabemos que la mínima variedad lineal 
proyectiva engendrada por la unión de ampos puntos es 
[ ] [ ] [ ] [ ]( )yxLyx rrrr

∪=+ . Si r es una recta que pasa por ambos puntos, será 

[ ] [ ] ryx ⊆+
rr

, y, por otra parte, como la dimensión de r es 1, será r la 
mínima variedad lineal proyectiva que contiene a ambos puntos, luego 

[ ] [ ]yxr rr
+⊆ . En definitiva, es [ ] [ ]yxr rr

+=  

2) Igual que en el apartado anterior: [ ] [ ] [ ] [ ] [ ] [ ]( )zyxLzyx rrrrrr
∪∪=++ , y 

cualquier plano pl que contenga a los tres puntos será [ ] [ ] [ ]zyxpl rrr
++⊆ . 

Por consiguiente, se tiene que [ ] [ ] [ ]zyxpl rrr
++= . 

3) En el plano proyectivo [ ] [ ] [ ]zyxpl rrr
++= , la recta [ ] [ ]yxr rr

+=  es parte de 

dicho plano, luego [ ] [ ] .plyxr ⊆+=
rr

 
 
 
 
 
Teorema 14: 
 

1) Todo hiperplano proyectivo es una variedad lineal proyectiva maximal. 

2) )(PH Γ∈  es hiperplano proyectivo [ ]{ }0)(//0,*
1 ==≠∈∃⇔ + xfxHfVf n

r
 

 
Demostración: 
 

1) Si H es hiperplano proyectivo del espacio proyectivo P, es 1dim −= nH . Si 
hay una variedad .dimdimdim/)( PAnAHAAHPA =⇒=⇒>⇒⊆Γ∈  
Por consiguiente H es variedad lineal proyectiva maximal. 

2) Veamos la doble implicación, probando que se verifica en cada uno de los 
dos sentidos: 

a) )(PH Γ∈  es hiperplano proyectivo [ ]{ }0)(//0,*
1 ==≠∈∃⇒ + xfxHfVf n

r
 

              [ ] [ ] [ ] [ ] HyHyLPHyPynPnH +=∪=∧∉∈∃⇒=∧−=
rrrr )(/dim1dim  

              Puesto que )(1
1 PVn

−
+ Φ= , será:  [ ]( ) [ ] )()( 111

1 HyHyVn
−−−

+ Φ+Φ=+Φ=
rr

 

              Es decir, )()( 1
1 HyLVn

−
+ Φ⊕=

r
, por lo cual se tiene que: 

)(,,., 1
1 HxksiendoxyzVz n

−
+ Φ∈∈+=∈∀

rrrrr αα  
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              Sea la aplicación lineal αα =+=≠∈ ).()(/0,*
1 xyfzffVf n

rrr
. Se ha de  

              cumplir que 0)(1)()()(.).( =∧=⇒=+=+ xfyfxfyfxyf vrrrrr ααα . Esto 

              quiere decir que 0)(),(1 =Φ∈∀ − xfHx rr
, o bien: 

[ ]{ }0)(/ == xfxH rr
 

(la ecuación 0)( =xf r
 se denomina ecuación del hiperplano H) 

          b) [ ]{ } )(0)(//0,*
1 PHxfxHfVf n Γ∈⇒==≠∈∃ +

r
 es hiperplano proyectivo. 

              .1)(/0)(/ 11 =∈∃≠∈∃ ++ yfVyyfVy nn
rrrr

 

              Sea fN ker=  y llamemos fyLM ker)( ⊕=
r

.Veamos que 1+= nVM : 

              ⇒=−=−=−∈∀ + 0)()()()()()).((,1 zfzfyfzfzfyzfzfVz n
rrrrrrrrv

 

               ⇒∈∧∈∧+=⇒∈=−⇒ fxkzfxyzfzfxyzfz ker)().(ker).( rrrrrrrrrr
 

               MNyLzNxyLyzfxyzfz =⊕∈⇒∈∧∈∧+=⇒ )()().().( rrrrrrrrrr
 

               En definitiva, 11 ++ =⇒⊆ nn VMMV , por lo cual, siendo 1dim 1 +=+ nVn . y  

               Asimismo 1)(dim =yL r
, se deduce que nfN == kerdimdim , por lo  

               cual:  

              ( ) [ ]{ }0)(/1)(kerdimdim 1 ==⇒−=Φ= − xfxHnfH vr
 es hiperplano 

                           proyectivo. 
 
 
 
Corolario: 

1) La intersección de una recta proyectiva con un hiperplano proyectivo 
que no la contiene es un único punto proyectivo. 

2) La intersección de dos rectas proyectivas distintas es un único punto 
proyectivo. 

3) La intersección de un plano proyectivo bidimensional con  un 
hiperplano proyectivo que no lo contiene es una recta proyectiva. 

4) La intersección de dos hiperplanos proyectivos distintos del espacio 
proyectivo tridimensional es una recta proyectiva. 

 Demostración: 
 

1) Si la recta no está incluida en el hiperplano, la unión de ambas variedades 
genera el espacio proyectivo: 

 
nPHrPHrPHrLHr ==+⇒=+⇒=∪⇒⊄ dim)dim()(  

          por tanto: 
 
                0)1(1)dim(dimdim)dim( =+−+=+−+=∩ nnHrHrHr  
 
          lo que indica que la variedad intersección es un punto proyectivo. Esto es, se 
          trata de que 
                                         [ ]{ }1,./ +∈==∩ nVxxazzHr rrrr

 

 
          podemos encontrar una expresión, a partir de la recta que pasa por dos 
          puntos proyectivos, [ ] [ ]uv rr , : 
 

          [ ] [ ] [ ]{ } [ ] [ ] [ ]{ }0)()(/0)(/, 1 =∧+Φ∈=∩⇒==+≡ − zfuvzzHrzfzHuvr rrrrrrrrr
 

 
          es decir: 
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[ ]{ } [ ]{ }

[ ]{ } [ ]

[ ]








∈−===∩⇒

⇒








−==∩⇒=+=⇒

⇒=+===∧+==∩

+1.
)(
)(,./

).
)(
)((./0)(.)(.)(/

0)..()(/0)(../

nVu
uf
vfvxxazzHr

u
uf
vfvazzHrufbvfazfz

ubvafzfzzfubvazzHr

r
r

r
rrrrr

r
r

r
rrrrrrr

rrrrrrrrr

 

 
2) Es igual que el apartado anterior: 

 
2dim)dim()( 21212121 ==+⇒=+⇒=∪⇒≠ ArrArrArrLrr  

 
                0211)dim(dimdim)dim( 212121 =−+=+−+=∩ rrrrrr  
 
 

3) Sea µ plano proyectivo bidimensional y sea H hiperplano tal que H⊄µ : 
 

nPHPHPHLH ==+⇒=+⇒=∪⇒⊄ dim)dim()( µµµµ  
 

1)1(2)dim(dimdim)dim( =+−+=+−+=∩ nnHHH µµµ  
 
             lo que indica que la intersección, al tener dimensión 1, es una recta  
             proyectiva. 
 
 

4) Si la dimensión del espacio proyectivo P es 3, los hiperplanos del mismo 
serán las variedades de dimensión 2. 

 
3dim)dim()( 21212121 ==+⇒=+⇒=∪⇒≠ PHHPHHPHHLHH  

 
1322)dim(dimdim)dim( 212121 =−+=+−+=∩ HHHHHH  

 
 
 
 
 
 

4. El isomorfismo de dualidad: 
 
4.1. Sobre el espacio dual: 
 
 Repasando algo sobre los espacios duales: sobre todo espacio vectorial 

),( 1 kVn+ sabemos que puede definirse el espacio de las formas lineales de 1+nV  en k, 

o espacio dual ),( *
1 kVn+ . En estos espacios sabemos también que podemos 

establecer un isomorfismo de ortogonalidad, w, entre el retículo de las variedades 
lineales vectoriales de ),( 1 kVn+  y el retículo de las variedades lineales duales de 

),( *
1 kVn+ , por el cual a cada variedad vectorial M se le hace corresponder la 

variedad lineal dual,  w(M), ortogonal a la misma: 
 

)()(: *
11 ++ Γ→Γ nn VVw ,  )()(),( *

11 ++ Γ∈Γ∈∀ nn VMwVM  

siendo 
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{ }MxxfVfMw n ∈∀=∈= +
rr ,0)(/)( *

1  

 
resultando ser w un isomorfismo  contravariante entre ambos retículos: 
 





+=∩
∩=+

Γ∈∀ + )()()(
)()()(

),(,
2121

2121
121 MwMwMMw

MwMwMMw
VMM n  

 
también, continuando con el repaso, mencionemos la relación entre la dimensión de 
la variedad ortogonal w(M) del espacio dual y la dimensión de la variedad M dada 
del espacio vectorial, cuando nos encontramos en espacios finitodimensionales: 
 

                           MVMw n dimdim)(dim 1 −= +             [4.1_1] 

 
4.2. El esquema general de los cuatro retículos: 
 
De lo visto hasta aquí podemos resumir que conocemos la existencia de dos 
espacios vectoriales, cada uno con su espacio proyectivo asociado: 
 
a) ),( 1 kVn+ , espacio vectorial a la izquierda sobre el cuero k, en el que, al definir la 

relación R (definición 1) hacemos la partición en clases que originan la aparición del 
espacio proyectivo asociado P, y cuyos retículos de variedades admiten un 
isomorfismo covariante que hemos representado por Φ : 
 

)()(: 1 PVn Γ→ΓΦ + / 




Φ∩Φ=∩Φ
Φ+Φ=+Φ

Γ∈∀ + )()()(
)()()(

),(,
2121

2121
121 MMMM

MMMM
VMM n  

 

b) Igualmente, para el espacio dual ),( *
1 kVn+ podemos considerar su espacio 

proyectivo asociado P*, y el correspondiente isomorfismo covariante *Φ entre sus 
retículos: 

)()(: **
1

* PVn Γ→ΓΦ + /




Φ∩Φ=∩Φ
Φ+Φ=+Φ

Γ∈∀ + )()()(
)()()(

),(, *
2

**
1

**
2

*
1

*

*
2

**
1

**
2

*
1

*
*

1
*
2

*
1 MMMM

MMMM
VMM n  

Se tiene, en definitiva, el siguiente esquema: 
 

 
El isomorfismo 1* −ΦΦ= oo wd  se denomina isomorfismo de dualidad. 
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Teorema 15: 
 

1) La dualidad, d, es un isomorfismo contravariante entre los retículos )(PΓ  

y *)(PΓ . 

2) Si ),(PA Γ∈  entonces 1dim))(dim( −−= AnAd  
 
Demostración: 
 

1) Es inmediato, pues al ser 1* −ΦΦ= oo wd , se trata de la composición de un 
isomorfismo covariante con otro contravariante. 
Es decir, se verifica que: 





Γ∈+=∩
Γ∈∩=+

Γ∈∀
*)()()()(
*)()()()(

),(,
PBdAdBAd
PBdAdBAd

PBA  

2) Se trata de probar que 1dim))(dim( −−= AnAd . 

Por ser ( ) ( ) ( )( ))(*)(*)(* 111 AwAwAwAd −−− ΦΦ=ΦΦ=ΦΦ= ooo , se tiene: 

          ( ) 1dim)(dim 1 +=Φ− AA  

          ( )( ) ( ) AnAnAVAw n dim)1(dim1)(dimdim)(dim 1
1

1 −=+−+=Φ−=Φ −
+

−  

          ( )( )( ) ( )( ) 1dim1)(dim)(*dim 11 −−=−Φ=ΦΦ −− AnAwAw  
 
 
 
Teorema 16: 
 

1) la imagen dual del vacío es todo el espacio proyectivo dual: 
*)( Pd =φ  

2) La figura dual de un punto es un hiperplano: 
[ ] [ ] *)(*)(),( PHxdPx Γ∈=Γ∈∀

rr
 

3) La figura dual de un hiperplano es un punto: 
[ ] *)(*)(),( PxHdPH Γ∈=Γ∈∀
r

 
Demostración: 
 

1) Veamos que, efectivamente, la imagen dual del conjunto vacío es todo el 
espacio proyectivo dual: 

 

a) )(0)()( 1
1

+
− Γ∈=Φ⇒Γ∈ nVP φφ , por la definición del isomorfismo Φ dada 

en el enunciado del Teorema 7. 

b) *
11 )0(,0 ++ =∈ nn VwV , pues )0()0(0)0(, *

1
*

1 wVwffVf nn ⊆⇒∈⇒=∈∀ ++ , 

de donde se deduce que *
1)0( += nVw . 

c) Finalmente, *)(* *
1 PVn =Φ + , por la definición del isomorfismo Φ*. 

 

En definitiva, *)(*)( 1 Pwd =ΦΦ= − φφ oo  
 

2) Veamos ahora que la imagen de un punto del espacio proyectivo P es un 
hiperplano de su espacio proyectivo dual P*: 

 
[ ] [ ] [ ] 1)dim(/)(0dim),( 1

1 =∈=Φ⇒=Γ∈∀ +
− xaVxaxxPx n

rrrrr
 

{ } *
1

*
1 *0)(/)( ++ ∈==∈= nn VMxfVfxw rr

, y por [4.1_1] es:  
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nnxaVM n =−+=−= + 11)dim(dim*dim 1
r

 

           Finalmente, es 11*dim*dim*)(*)(* * −=−=⇒Γ∈=Φ nMHPHM  
           Por lo cual se tiene, en definitiva, que: 

                     [ ] [ ] hiperplanoHnHHxwxd *1*dim/*)(*)( 1 ⇒−==ΦΦ= − r
oo

r
 

    
3) Para ver que la imagen de un hiperplano es un punto del espacio proyectivo 

dual, observemos: 
 

          1dim),( −=⇒Γ⊆ nHhiperplanoPH  

          Y por el teorema 15_2): 01)1(1dim)(dim =−−−=−−= nnHnHd  

           O sea, )(0)(dim HdHd ⇒= es punto proyectivo del espacio dual. 
 
 
 
Definición 12: 
 
Dada una familia de hiperplanos del retículo de las variedades proyectivas del 
espacio proyectivo P, se dice que esta familia es linealmente independiente si la 
familia de sus respectivos puntos duales en el retículo de las variedades lineales 
proyectivas del espacio dual proyectivo P* es linealmente independiente: 
 

rjPhHdnHPHSi jjjj ,...,1*,)(1dim/ =∈=∧−=⊆  entonces se define: 

{ } { } lindPhhlindPHH rr *)(,...,)(,..., 11 Γ⊆⇔Γ⊆  
 
Un hiperplano H del retículo de variedades lineales proyectivas del espacio 
proyectivo P se dice que es combinación lineal de una familia de hiperplanos de 
dicho retículo, si su imagen dual en el retículo de las variedades lineales proyectivas 
del espacio dual proyectivo P* depende linealmente de la familia de los puntos 
duales de dicha familia de hiperplanos en P*. 
 

1dim),(,...,1*,)(1dim/ −==∧=∈=∧−=⊆ nHHdhrjPhHdnHPHSi jjjj   

{ } { }rr hhdelincomhHHdelincomH ,...,__,...,__ 11 ⇔  
 
Entenderemos como rango de una familia de hiperplanos del retículo de variedades 
lineales proyectivas de P al rango de la familia de puntos duales en el espacio 
proyectivo dual P*: 
 

rjPhHdnHPHSi jjjj ,...,1*,)(1dim/ =∈=∧−=⊆ ,

{ } { }rr hhrangoHHrango ,...,,..., 11 =  
 
Definición 13: 
 
Un haz lineal de hiperplanos proyectivos es una familia de hiperplanos cuya imagen 
dual es una recta proyectiva. 
 
Como una recta proyectiva es un subespacio del correspondiente espacio proyectivo 
dual P*, un haz lineal de hiperplanos proyectivos es un subespacio del espacio 
proyectivo P. 
 
 
 
Teorema 17: 
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Dos planos distintos cualesquiera de un haz lineal de hiperplanos proyectivos 
constituyen una base del mismo. 
 

⇒hiperplinhazF __ { } FdebaseHHHHFHH 212121 ,,/, ≠∈∀  
 

Demostración: 
 

- Si los dos planos son distintos, ,21 HH ≠  serán trivialmente linealmente 
independientes, es decir, los puntos de uno no dependen de los puntos del 
otro. 

- Veamos que son generadores del espacio F  constituido por el haz lineal de 
los hiperplanos: 

 
           [ ] [ ]2211 )(,)( hHdhHd == , siendo, por teorema 10, [ ] [ ]21 , hh puntos del  

           espacio dual P*.  Sea la recta que contiene a ambos puntos: 
 

[ ] [ ] [ ]21 hhr +=  
Como, por definición de haz lineal de hiperplanos, la imagen dual de cualquiera de 
los planos está en una misma recta, se entiende que el punto imagen dual de 
cualquier otro hiperplano del haz se encuentra en la recta anterior: 
 

[ ] [ ]rhHdPH ⊆=Γ∈∀ )(),( , es decir [ ] [ ] [ ] [ ]21 hhrdlh += , o sea: 

[ ] [ ] [ ]
{ } [ ] [ ] [ ]{ }2121

2211212211
*

121

,__,__
..,,,,,/,,

hhdelinealcomhffdelinealcombf
fffkhfhfhfVfff n

⇒⇒
⇒+=∈∃∈∈∈∈∀ + ϕϕϕϕ

 

por la definición 12, [ ] [ ] [ ]{ }⇒21 ,__ hhdelinealcomh  

[ ] [ ] [ ]{ } { }212
1

1
11 ,__,__ HHdelinealcomHhhdelinealcomh ⇒ΦΦΦ⇒ −−−  

En definitiva todo hiperplano del haz es combinación lineal de los dos planos 
indicados, por lo que ambos planos generan a todo el haz lineal de hiperplanos. 
 
Como también son ambos entre sí independientes, constituyen una base de dicho 
espacio proyectivo. 
 
 
 
Teorema 18: 
 
Dado un haz lineal de hiperplanos proyectivos, F, cualquier punto [ ]zr  del espacio P 
está contenido en un hiperplano del haz. 
 
Demostración:  
 
Sea { }21, HH  una base del espacio F. Si el punto proyectivo [ ]zr  pertenece a alguno 
de ellos, ya está probado. Caso contrario se tiene 
 

[ ]{ } [ ]{ } [ ] [ ]
0)(0)(

0)(/,0)(/

21

212211

≠∧≠⇒
⇒∉∧∉∧=∈==∈=

zfzf
HzHzxfPxHxfPxH

rr

rrrrrr

 

Cualquier otro hiperplano, H, del haz, será  [ ]{ }0)(/ == xfxH rr
, cumpliéndose 

además, por ser combinación lineal de los elementos de la base, que 

221121 ..,, fffk ϕϕϕϕ +=∈∃ , o sea [ ]{ }0)()(/ 2211 =+= xfxfxH rrr ϕϕ  
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Si elegimos )(),( 1221 zfzf rr

−== ϕϕ , se obtiene el plano 
[ ]{ }0)()()().(/ 2112 =−= xfzfxfzfxH z

rrrrr
 

el cual, obviamente, contiene al punto [ ]zr , pues 0)()()().()( 2112 =−= zfzfzfzfzf rrrrr
 

 
En definitiva, para cualquier punto del espacio proyectivo, siempre existe un 
hiperplano al cual pertenece. 
 
 
 
Teorema 19: 
 
Para toda variedad lineal vectorial )( 1+Γ∈ nVM , se verifica que la imagen dual del 

conjunto de hiperplanos de P que contienen a )(MΦ  es ))((* MwΦ , cumpliéndose 
la relación 

1))((*dim)(dim −=Φ+Φ nMwM  
Demostración: 
 
Sea F una familia de hiperplanos del espacio proyectivo P(Vn+1) que contienen a la 
variedad )(MΦ  
 

)())(()())(()(, FdMdHdMdHMFH ⊆Φ⇒⊆Φ⇒⊆Φ∈∀  

Como, por el teorema 16_3), la imagen dual de un hiperplano es un punto de P*, 
se tiene que 

))(()())(()(, MdFdMdhHFH Φ⊆⇒Φ∈=Φ∈∀  
 
En definitiva, es ))(()( MdFd Φ= , y como por definición del isomorfismo de 

dualidad d, es  )(*))((*))(( 1 MwMwMd ooo Φ=ΦΦΦ=Φ − , se verifica lo indicado 
en el enunciado: 

)(*)( MwFd oΦ=  
Para ver la expresión de la dimensión, tenemos en cuenta el teorema 15_2): 
 

( ) 1)(dim))((dim −Φ−=Φ MnMd  
o sea,  

( ) 1)(dim))((dim))(*dim( −Φ−=Φ=Φ MnMdMwo  
de donde: 

1))(*dim()(dim −=Φ+Φ nMwM o  
 
Corolario: 

1) La familia F de hiperplanos proyectivos que contienen a una variedad lineal 
proyectiva )(MΦ de dimensión n-2 es un haz lineal de hiperplanos 
proyectivos. 

2) Si n=3, entonces los hiperplanos proyectivos del haz lineal que contiene a la 
variedad )(MΦ de dimensión n-2 se cortan en una recta proyectiva. 

3) Si n=2, entonces los hiperplanos proyectivos del haz lineal que contiene a la 
variedad )(MΦ  de dimensión n-2 se cortan en un punto proyectivo. 

Demostración: 
 

1) Si ,2))(dim( −=Φ nM  se tiene que: 

          1)2(1))(*dim(1))(*dim()(dim =−−−=Φ⇒−=Φ+Φ nnMwnMwM oo  
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          Es decir: )(1)(*dim)(dim FdMwFd ⇒=Φ= o es recta proyectiva, 
          de donde se deduce que F es un haz lineal de hiperplanos proyectivos,  
          por definición. 

2) Es trivial, pues en este caso 123))(dim( =−=Φ M , con lo que es )(MΦ  una 
recta proyectiva que está contenida en el haz de hiperplanos. Es decir, todos 
los hiperplanos del haz se cortan en dicha recta proyectiva. 

3) En este caso los hiperplanos H del haz son realmente rectas proyectivas, 
pues 112dim =−=H , es decir, se trata de un haz de rectas proyectivas que 
se cortan en )(MΦ , y como 022))(dim( =−=Φ M , todo el haz se corta en 
un punto. 

 
 
Definición 14: 
 
      1) ),(, PBA Γ∈∀  se denomina proyección de A desde B (o bien proyección de B 

          desde A) a la variedad suma )(PBA Γ∈+  

      2) ),(, PBA Γ∈∀ se denomina sección o corte de A por B (o bien sección o corte  

       de B por A) a la variedad intersección )(PBA Γ∈∩ . 
  3) Dos variedades proyectivas se dicen incidentes si una de ella está contenida 

       en la otra: 
)(, PBA Γ∈ incidentes ABBA ⊆∨⊆⇔  

 
Definición 15: 
 
Consideremos una variedad lineal proyectiva A del espacio proyectivo )( 1+nVP  

asociado al espacio vectorial 1+nV . Se denomina radiación de base A al espacio 

proyectivo  asociado  al espacio  vectorial cociente  )(1
1 AVn

−
+ Φ , esto es, al espacio 









Φ−
+

)(1
1

A
VP n  

siendo Φ el isomorfismo covariante entre el retículo )( 1+Γ nV  de las variedades 

lineales vectoriales y el retículo )(PΓ de las variedades lineales proyectivas del 
correspondiente espacio proyectivo asociado. 
 
Por abreviar, representaremos por AP /  a la radiación de base A en el espacio 
proyectivo P. 
 
 
Teorema 22: 
 
Los puntos del espacio proyectivo AP /  son las variedades lineales proyectivas 
[ ] [ ] AxAx ∉+

rr / , o sea, son las proyecciones de A desde los puntos [ ] Px ∈
r

 tales que 

[ ] Ax ∉
r

. 
 
Demostración: 
 

[ ]
[ ] [ ] AxAPAxAxAx

AxzzAxAxzAPAVz n

∉∧∈+=+Φ=ΦΦ+Φ=

=Φ+Φ==Φ⇒Φ∉Φ+=≡Φ∈∀
−

−−−−
+

rrrr

rrrrrrr

/)()()(

))(()()(/)(,/)(/
1

1111
1  
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Es inmediato que los puntos rkAxk ,...,1),(1 =Φ+ −r
 son linealmente independientes 

sii lo son también los puntos imágenes [ ] rkAxk ,...,1, =+
r

 

 
 
 
Teorema 23: 
 

1) La figura dual, ( )APd / , de las radiaciones de base A, es el conjunto F de 

todos los hiperplanos de ).(Ad  
2) El conjunto de todos los hiperplanos de una variedad lineal de un espacio 

proyectivo es también un espacio proyectivo. 
 
Demostración: 
 
1) Veamos en primer lugar que la imagen dual de cada punto de la radiación es un 
hiperplano de  ).(Ad  A continuación veremos que todo hiperplano de )(Ad  es la 
imagen dual de un punto de la radiación. 
 
Sea [ ]( ) [ ]( ) )(AdxdAxdGx ∩=+=

rr
la imagen dual de un punto de la radiación. Se 

tiene obviamente que ).(AdGx ⊆ Veamos su dimensión. 

Por ser [ ]xr  un punto del espacio proyectivo P, su dual es un hiperplano de P*, por 

lo que [ ] 1)(dim −= nxd r
. Llamemos AnAd =)(dim . 

Se tiene, por el teorema 11:  
[ ]( ) [ ] [ ]( )

[ ]( ) ( )
11

*dim1dim1dim1
)()(dim)(dim)(dim)()(dimdim

−=−+−=
=−+−=−+−=∩−+−=
=+−+=∩=

AA

AAA

x

nnnn
PnndnnAxdnn

AdxdAdxdAdxdG
φr

rrr

 

En definitiva: 

)(
)(dim

1dim
)( AddehiperplanoG

nAd
nG

AdG x
A

Ax
x ⇒





=
−=

∧⊆  

 
Ya sabemos que la imagen dual de cada punto de la radiación es un hiperplano de 
d(A), falta solo establecer que todos los hiperplanos de d(A) son imágenes duales 
de puntos de la radiación: 

1)(dimdim)(/)( −=⇒⊆∀ AdGAddehiperplanoGAdG  

Sea UAAdGUdGdU ⊆⇒⊆=⇒= − )()()(1 . Por el teorema 15_2):  

( )
[ ] [ ] [ ] AxUAxUxAAnn

AdnAdnGnUdnU
+=⇒∉∈∃⇒+=−−−=

=−=−−−=−−=−−=
rrr /1dim)1dim(

)(dim11)(dim(1dim1)(dim)dim(
 

 
2) Es obvio, una vez probado lo anterior. 
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5. Variedades lineales proyectivas complementarias 
 
Definición 16: 
 
Se dice que las variedades lineales proyectivas del espacio proyectivo P son 
complementarias si la variedad suma coincide con P y son disjuntas 
 

φ=∩∧=+⇔ BAPBABdeariacomplementA  
 
 
Teorema 24: 
 
Si una variedad A es complementaria de otra variedad B se verifica que la radiación 
P/B es la proyección del conjunto de los puntos de A desde B. 
 
Demostración: 
 
Proyección de [ ] Axk ∈

r
 desde B: [ ] Bxk +

r
 

Proyección de todos los puntos de A desde B:  [ ] [ ]{ }AxBxGA ∈+=
rr /  

Radiación de base B: [ ] [ ]{ }BxBxBP ∉+=
rr //  

Se trata de probar que BPGA /=  

Puesto que BPGBA A /⊆⇒=φI . Hemos de probar, por tanto, que AGBP ⊆/ , 

es decir, se trata de probar que [ ]( ) [ ]( ) AGBxBPBx ∈+⇒∈+∀
rr / , o, lo que es lo 

mismo, que si [ ] [ ] AxBx ∈⇒∉
rr

 

Para ello vamos a probar que [ ]( )( ) 0dim =∩+ ABxr , es decir, que [ ]( )( )ABx ∩+
r

 es 
un punto. Como ese punto pertenece a A y no pertenece B (por ser A y B 
disjuntos), solo puede ser [ ] Ax ∈

r
, con lo que terminaría la prueba. 

Veamos: 
 

[ ]( ) [ ] [ ]( ) [ ]
1dim

)1(dim0)dim(dimdimdimdimdimdim
+=

=−−+=−+=∩−+=+
B

BBxBxBxBx φrrrr

[ ]( ) nPBABAABABx =+−=+∩−+=++=++ 1)dim(dim1)dim()dim(dim1dimdimdim φr
 

[ ]( )[ ] [ ]( ) [ ]( )[ ] [ ]( )[ ]
[ ]( )[ ]ABxn

ABxABABxABxABx
∩+−=

=∩+−++=∩+−++=++
r

rrrr

dim
dimdim1dimdimdimdimdim

[ ]( )[ ] [ ]( )[ ] 0dimdimdim =−=−=++−=∩+ nnPnABxnABx rr
 

 
que termina la demostración. 
 
 
Definición 17: 
 
Dadas dos variedades lineales proyectivas, A y B, entre sí complementarias, se 
denomina perspectividad entre A y P/B a la aplicación biyectiva BPA /: →Ω  
definida por la condición: 

[ ] [ ] [ ] BxxAx +=Ω∈∀
rrr )(,  

 
 
 
Variedades lineales proyectivas asociadas a un par de variedades lineales 
proyectivas complementarias. 
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  Sean φ=∩∧=+Γ∈ BAPBAPBA ),(, . Se tienen las conexiones siguientes: 
  

1) Por el isomorfismo de dualidad: 
 

- Para las variedades complementarias, A y B: 
 

*:*: BBdAAd →→  
 

- Para las radiaciones de base A y de base B: 
 

( ) ( )**
:: B

P
B

PdA
P

A
Pd →→  

 
 
 

2) Por la bisección de perspectividad: 
 

- Para las variedades y radiaciones: 
 

A
PBB

PA →Ω→Ω ::  

 
- Para las variedades y radiaciones duales: 

 

( ) ( )**:***:* A
PBB

PA →Ω→Ω  

 
 

3) Por composición de las aplicaciones anteriores: 
 

- Desde variedades a radiaciones duales: 
 

( ) ( )*:*: A
PBdB

PAd BA →→  

 
- Desde radiaciones a variedades duales: 
 

*:*: ** BA
PdAB

Pd BA →→  

 
  En resumen, se tienen los esquemas: 
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Teorema 25: 
 
Todas las variedades que aparecen en los diagramas anteriores tienen la misma 
dimensión. 
 
Demostración: 
 

AA dim*dim = , pues ambas variedades duales son isomorfas por el isomorfismo 
contravariante de dualidad. *:*: BBdAAd →→  
 

( ) ABP dim/dim = , pues existe entre ambos conjuntos la bisección de 

perspectividad. A
PBB

PA →Ω→Ω ::  

 
ABPBP dim)/dim()*/dim( == , por ser variedades duales, isomorfas por 

dualidad. 
 
La dimensión, en definitiva, coincide con la dimensión de la variedad A que aparece 
en el diagrama (todo ello siempre que se cumpla la hipótesis de que ambas 
variedades lineales proyectivas, A y B, con complementarias). 
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6. Configuraciones, r-vértices, coordenadas proyectivas: 
 
Definición 18: 
 
Una configuración es un conjunto finito de variedades lineales proyectivas 
 

{ } kk
k
m smnkACONF

k
,...,2,1,1,...,1,0, =−==  

 
cuyas dimensiones son 1,...,2,1,0 −= nk . y son tales que el número ijϕ  de 

variedades lineales proyectivas i
mi

A  de la configuración incidentes con las 

variedades lineales proyectivas j
m j

A  depende únicamente de i  y de j. 
 
La matriz ( )ijϕ  se llama matriz de incidencias de la configuración. 

 
 
 
 
Definición 19: 
 
Un ejemplo de configuración en un espacio proyectivo P es lo que se denomina un 
r-vértice d-dimensional, que es un conjunto de r puntos proyectivos que engendran 
una variedad lineal proyectiva d dimensional, y tal que d+1 de estos puntos son 
linealmente  independientes. 
 
 
 
 
 
Teorema 26: 
 
Sea el espacio proyectivo P sobre el espacio vectorial a izquierda ( )kVn ,1+ , y 

consideremos un (n+2)-vértice n-dimensional: 
 

[ ] [ ] [ ] [ ]{ }yxxxR nv
rrrr ;,...,, 10=  

 
Siempre es posible encontrar un representante [ ] nixz ii ,...,1,0, =∈

rr
 de cada uno de 

los n+1 primeros puntos, de modo que  
 

[ ]yuzzz n
rrrrr

∈=+++ ...10  

 
estando todos estos representantes unívocamente determinados salvo un factor a 
la izquierda. 
 
Demostración: 
 
Si son [ ] [ ] [ ]nxxx rrr ,...,, 10  linealmente independientes en P, entonces los representantes 

nzzz rrr ,...,, 10  serán linealmente independientes en ( )kVn ,1+ , que es de dimensión n+1, 

es decir, si añadimos otro vector, ya el conjunto será linealmente dependiente: 
 

uzzz n ,,...,, 10
rrr

 lin. depend [ ]uuzzznik nni
rrrrr

∈=+++=∈∃⇒ ϕϕϕϕ .../,...,1,0, 1100  



Espacios Proyectivos                                                                                         Carlos S. Chinea 

Matemática, Física, Astronomía, casanchi.com                                            diciembre, 2009 26

 
y como [ ] [ ] nixznixz iiiii ,...,1,0,.,...,1,0, =∈→=∈

rrrr ϕ , queda probado el enunciado 

del teorema, esto es, que existen representantes vectoriales de los n+1 puntos del 
(n+2)-vertice cuya suma pertenece al punto [ ]ur . 
 
Tal suma queda determinada salvo una constante de proporcionalidad a izquierda, 
pues si [ ]uu rr

∈  también [ ] { }0,. −∈∈ kmuum rr
 

 
El punto [ ]ur  se llama punto unidad del (n+2)-vértice n dimensional. 
 
 
 
 
 
Definición 20: 
 
El conjunto de los vectores obtenidos en el teorema 26, { }nzzz rrr ,...,, 10  se denomina 

base normalizada respecto al punto [ ]ur . 
 
El punto [ ]ur  se llama punto unidad del (n+2)-vértice n dimensional. 
 
 
 
 
 
 
Teorema 27: 
 
Sea el espacio proyectivo P sobre el espacio vectorial 1+nV a izquierda y el (n+2)-
vertice n dimensional [ ] [ ] [ ] [ ]{ }yxxxR nv

rrrr ;,...,, 10= . 

Consideremos el espacio vectorial Mn+1 cuyos vectores son las matrices de una sola 
fila y n+1 columnas sobre el cuerpo k a izquierda, y consideremos el espacio 
proyectivo PM sobre Mn+1: 
 

( ) ( ){ } ( )[ ] ( )[ ]{ },...,...,,,...,,...,,,,...,...,,,...,,...,, 101010101 nnMnnn PM γγγαααγγγααα ==+  

 
Entonces, el (n+2)-vértice Rv define una biyección entre el espacio proyectivo P y el 
espacio proyectivo PM de  modo que a cada punto de P le corresponde un único 
punto de PM  y viceversa, y queda definida por la condición 

MPPf →:  

[ ] [ ]( ) ( )[ ] [ ] [ ]nnMn zxzxzxxsiendoPxxxxfPx rrrrrr ......,,...,,, 110010 +++=∈=∈∀  

 
Demostración: 
 
Cada punto proyectivo, [ ]),...,,( 10 nµµµ  del espacio PM  tiene por representantes a 

las matrices proporcionales { }0),,...,,.( 10 −∈ kaa nµµµ . 

Para probar que la relación f indicada en el enunciado es una biyección hemos de 
probar que es aplicación, que es sobreyectiva, y que es inyectiva. 

- f es aplicación. Para ello basta probar que ningún punto proyectivo de P 
tiene más de una imagen en PM , es decir, que si  
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[ ]( ) ( )[ ] [ ]xzxzxzxxsiendoPxxxxf nnMn
rrrrrr

∈+++=∈= ......,,...,, 110010  

          también se obtendrá la misma imagen para otro representante 'xr  del mismo 
          punto proyectivo original: 
           [ ]( ) ( )[ ] [ ]xzxzxzxaxaxsiendoPxxxxf nnMn

rrrrrrr
∈+++==∈= )......(',,...,, 110010  

          pues la matriz que define la expresión del vector 'xr  es ),...,,.( 10 nxxxa , que  

          es también representante del mismo punto imagen:  
                                          [ ]),...,,(),...,,.( 1010 nn xxxxxxa ∈  

- es sobreyectiva. Se trata ahora de probar que para cualquier punto 
proyectivo del espacio PM  existe un punto proyectivo del espacio P del cual es 
imagen por f, lo cual es trivial:  
( )[ ] [ ]( ) ( )[ ]nnnMn xxxxfzxzxzxxPxxx ,...,,...,,...,, 10110010 =⇒+++=∃∈∀

rrrrr  
- es inyectiva. Veamos que si dos puntos proyectivos de P tienen la misma 

imagen en PM  entonces ambos puntos de P coinciden: 
( )[ ] ( )[ ] [ ] [ ]vuvvuu nn

rr
=→= ,...,,..., 00  

 
( )[ ] ( )[ ]

( )[ ] ( )[ ]
( )[ ] ( )[ ]→




∈→∈∀
∈→∈∀

→

→=

nnnn

nnnn

nn

uuyyvvyy
vvxxuuxx

vvuu

,...,),...,(,...,),...,(
,...,),...,(,...,),...,(

,...,,...,

0000

0000

00

 

[ ] [ ]
[ ] [ ] [ ] [ ]vu

uyvzyzyy
vxuzxzxx

nn

nn rr
rrrrrr

rrrrrr

=→




∈→∈++=∀
∈→∈++=∀

→
...
...

00

00  

 
Teorema 28: 
 
Para todo automorfismo interior ϕ  en el cuerpo k se verifica que: 

1) ( )[ ] ( )[ ] MnMn PxxPxx ∈∈∀ ,...,,,..., 00 ϕ  

2) ( )[ ] ( )[ ] ( )[ ]nnMn xxxxPxx ,...,,...,,,..., 000 ϕϕ =∈∀  

Demostración: 
 
1) ( )[ ] ( ) ( )[ ] ( ) 10000 ,...,,0,,...,,...,.,..., +∈≠∈⇔∈∀ nnnnMn MxxaxxxxaPxx  

          
( )[ ] ( )( ) ( )

( ) ( )[ ] ( )[ ] Mnnnn

nnnnn

PxxaxaxMaxax
axaxxxahhxxhh
∈=⇒∈=

===∈∀

+ ,...,)(),...,()(),...,(
,...,,...,),...,(,,...,),...,(

0010

00000

ϕϕϕϕϕ
ϕϕϕ

 

      2) ( ) [ ] ( ) ( ) ( ) =⇒≠=∈∀ nnnnn hhaxxahhxxhh ,...,0,),...,(,...,,),...,(,..., 00000 ϕϕ  

          

( ) ( ) ( )
( ) ( )

( ) ( )[ ]nn

nn

nnn

xxxxa
xxaxaxa

axaxaxaxxxa

,...,,...,).(
)(),...,().()().(),...,().(
)(),...,(,...,),...,(

00

00

000

ϕϕϕ
ϕϕϕϕϕϕϕ
ϕϕϕϕ

∈=
===
====

 

              por lo que se verifica la inclusión  [ ] [ ]),...,(),...,( 00 nn xxxx ϕϕ ⊆  

           ( ) [ ] ( ) ( ) ( ) =⇒≠=∈∀ nnnnn hhaxxahhxxhh ,...,0,,...,.,...,,),...,(,..., 00000 ϕϕ  

            

( ) ( )
( ) ( )
( ) [ ]nn

n

nn

xxxxa
xaxaxaxa

xaxaxxa

,...,(),...,)((

)(,...,)()().(),...,().(

)(),...,()(),...,(.

00
1

1
0

1
0

1
0

1
00

ϕϕϕ

ϕϕϕϕϕϕϕϕϕ

ϕϕϕϕ

∈=

===

===

−

−−−−  

              y también se verifica la inclusión ( )[ ] ( )[ ]nn xxxx ,...,,..., 00 ϕϕ ⊆  

              en definitiva, de la doble inclusión: 
( )[ ] ( )[ ]nn xxxx ,...,,..., 00 ϕϕ =  
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Por el teorema 27 sabemos que el (n+2)-vértice Rv define una biyección entre el 
espacio proyectivo P y el espacio proyectivo PM de  modo que a cada punto de P le 
corresponde un único punto de PM  y viceversa, y queda definida por 

MPPf →:  

[ ] [ ]( ) ( )[ ] [ ] [ ]nnMn zxzxzxxsiendoPxxxxfPx rrrrrr ......,,...,,, 110010 +++=∈=∈∀  

 
Veamos a continuación el teorema que nos va a permitir establecer el concepto de 
coordenadas proyectivas. 
 
 
Teorema 29: 
 
El (n+2)-vértice Rv n dimensional [ ] [ ] [ ]{ }uvvR nv

rrr ;,...,0=  hace corresponder a cada 

punto proyectivo [ ] Px ∈
r

 el conjunto [ ]( )xf rϕ , siendo [ ]( ) ( )[ ] Mn Pxxxf ∈= ,...,0
r

donde 

,...00 nnvxvxx rrr
++=  estando la base { }nvv rr ,...,0  normalizada respecto de [ ]uu rr

∈  y 

siendo ϕ  un automorfismo interior de k, que recorre el conjunto kϕ  de todos los 

automorfismos interiores de k para los diferentes representantes vectoriales de [ ]ur . 
 
Demostración: 
 
Sea ( )nxx ,...,0  la matriz de las coordenadas de xr  en la base { }nvv rr ,...,0  normalizada 

respecto de [ ]uu rr
∈ , o sea nvvu rrr

++= ...0 . 

[ ] [ ]( ) ( )[ ]nM xxxfPxPPf ,...,,,: 0=∈∀→
rr

 

Sea ( )nyy ,...,0  la matriz de las coordenadas de xr  en la base { }nww rr ,...,0  

normalizada respecto de [ ]uu rr
∈' , o sea nwwu rrr

++= ...' 0 . 

[ ] [ ]( ) ( )[ ]nM yyxgPxPPg ,...,,,: 0=∈∀→
rr

 

Expresión de xr  en ambas bases: nnvxvxx rrr
++= ...00 ,   nnwywyx rrr

++= ...00  

Como ur  y 'ur  son representantes del mismo punto proyectivo [ ]ur  se tiene que 

existe la relación 0,.' ≠= auau rr
, por lo cual →++=++ nn vavaww rrrr ...... 00  

nivaw ii ,...,0,. ==→
rr

, por tanto: 

niaxyvayvayvxvxx iinnnn ,...,0,...... 1
0000 ==→++=++= −rrrrr

, y se tiene: 

( ) ),(11111
iiii xaaaxaaaxay ϕ−−−−− ===  siendo axax ii

1)( −=ϕ  el automorfismo interior 

en k inducido por a. 
[ ] [ ]( ) ( )[ ] ( )[ ]

[ ] [ ] [ ] [ ]
[ ]( )xf

xxxxxxxxa
xaxayyxgPxPPg

nnnn

nnM

r

rr

ϕ
ϕϕϕϕϕϕ

ϕϕ

=
=====

===∈∀→
−

−−

),...,(),...,())(),...,(())(),...,((

)(),...,(,...,,,:

0000
1

1
0

1
0

 

Para cualquier otro representante [ ]uu rr
∈" , se tendría 0,." ≠= bubu rr

, y si llamamos 

δ  al automorfismo inducido por b, bxbxi 0
1)( −=δ , se tiene: 

[ ] [ ]( ) ( )[ ] ( )[ ]
[ ] [ ] [ ] [ ]

[ ]( )xf
xxxxxxxxb

xbxbzzxhPxPPh

nnnn

nnM

r

rr

δ
δδδδδδ

δδ

=
=====

===∈∀→
−

−−

),...,(),...,())(),...,(())(),...,((

)(),...,(,...,,,:

0000
1

1
0

1
0
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Es decir, para cada constante de proporcionalidad entre los representantes 
vectoriales del punto origen del n+2 vértice hay un automormismo interior distinto, 
lo que nos indica que se recorre el conjunto kϕ  todos los automorfismos interiores 

de k para los diferentes representantes vectoriales. 
 
 
 
Corolario: 
 
1) Si el cuerpo k es conmutativo, el (n+2)-vértice Rv define una bisección única 

MPPf →: , denominándose al punto [ ]( ) ( )[ ]nxxxf ,...,0=
r

 matriz de las 

coordenadas proyectivas del punto [ ]xr  en el sistema referencial proyectivo Rv. 

2) Si el cuerpo k no es conmutativo, el (n+2)-vértice Rv define para cada [ ] Px ∈
r

un 

punto imagen que queda determinado salvo un automorfismo interior de k, por lo 
que no define un sistema de referencia proyectivo. Para que lo sea, es necesario 
fijar también un único representante [ ]uu rr

∈  del punto unidad, con lo que el par 

),( uRv
r

 si sería un sistema de referencia proyectivo sobre un cuerpo no 

conmutativo. 
 
Demostración: 
 
Es obvio, del teorema 29. 
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