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GEODÉSICAS-II 
Las coordenadas geodésicas 

 
 
Estudiamos en esta segunda parte de las Geodésicas sus ecuaciones, 
coordenadas geodésicas y curvas de longitud mínima, como continuación 
del artículo GEODÉSICAS-I. La curvatura geodésica, donde exponemos las 
ideas básicas que definen el concepto. Se añade al final  un pequeño anexo 
sobre las relaciones básicas entre los vectores tangente, normal, la métrica 
y los símbolos de Christoffel. 
 
 
 
Ecuación de las geodésicas 

 
Las líneas geodésicas son aquellas curvas contenidas en la superficie en las que la  
curvatura geodésica es nula. Por ello el vector normal n  a la curva en el triedro de 

Frenet tiene la misma dirección que el vector N


 normal a la superficie en cada 
punto. Por consiguiente, se verifica que 
 

2,1,0. == irn i


 
o bien 

2,1,0. == ir
ds
td

i



 

De ser 
 

'
22

'
11

2
2

1
1 urur

ds
dur

ds
dur

ds
rdt 


+=+== ,  

se tiene que es: 
 

∑ +=++++=
kj

hhkjjk uruurururuururur
ds
td

,
22112112

2
222

2
111 "''""''2'' 


 

por lo cual: 
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[2.1a] 
 



Geodésicas-II. Las coordenadas geodésicas                             Carlos S. Chinea 

 2 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( )

( )[ ] ( )[ ] 0''''''2''

""''2''

""''2''""''2,122

'2,22'2,11".".''.2'.'..

"
221

2
12

2
2

2
22

2
1

2
1122

"
121

1
12

2
2

1
22

2
1

1
1112

2221122122
2

1212
1
12

2
222

2
2212

1
22

2
122

2
1112

1
11

22211221212
2
2222

2
121122211221

2
2

2
122212121212

2
2222

2
12112

=+Γ+Γ+Γ++Γ+Γ+Γ=

=++Γ+Γ+Γ+Γ+Γ+Γ=

=++Γ+Γ+Γ=+++

++=++++=

uuuuuguuuuug
uguguugguggugg
uguguuguguguguguu

uuurrurruurrurrurrr
ds
td

m
m

m
m

m
m




 

[2.1b] 
 
puesto que los g11, g12, g22 son independientes, se tiene, anulando coeficientes: 
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de [2.1b]:   
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En definitiva: 
 

                          2,1,0"''
,

==+Γ∑ muuu
kj

mkj
m
jk                  [2.1c] 

(ecuación de las geodésicas) 
 

estas expresiones representan, por simetría de índices, una sola ecuación. 
 
 
 
 
     Existencia de geodésicas 

 
A la vista de lo anterior, nos podemos preguntar si existen sobre una superficie 
cualquiera curvas en las que la curvatura geodésica kg es nula. ¿En un punto 
cualquiera P de una superficie regular S existe siempre alguna geodésica? ¿en 
qué casos?. Veremos a continuación que sí existen siempre estas líneas, 
mediante el teorema de existencia de ecuaciones diferenciales ordinarias de 
segundo orden. 

 
Teorema 02: La ecuación de las geodésicas puede expresarse como una 
ecuación diferencial ordinaria de 2º orden de la forma 
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Demostración: 
 
Basta hacer un cambio de parámetros en la ecuación de las geodésicas [2.1c]: 
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sustituyendo en [2.1c] para m=2: 
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sustituimos ahora "

1u por su expresión en la ecuación de las geodésicas para 
m=1: 
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de donde resulta, sustituyendo de nuevo '
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y al simplificar, extrayendo el factor común: 
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y se obtiene finalmente la ecuación diferencial ordinaria de segundo orden de la 
forma indicada [2.2a]: 
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Corolario: Por cada uno de los puntos de una superficie y en cada dirección pasa 
una curva geodésica, la cual queda determinada unívocamente mediante un 
punto de referencia y la tangente correspondiente a su dirección. 
 
Demostración: trivial, por ser la ecuación diferencial [2.2a] de segundo orden y 
por el teorema de existencia de ecuaciones diferenciales ordinarias de 2º orden. 
 
 
Ejemplo: 
 
Si se trata de una superficie esférica, por cada punto P  y en una dirección dada 
pueden ser trazadas infinitas curvas contenidas en la superficie, pero de todas 
esas infinitas curvas, solo una es geodésica: el círculo máximo que pasa por P 
en la dirección dada, ya que su curvatura es normal a la superficie (el vector de 
curvatura del círculo máximo tiene la dirección del centro de la esfera).  
 
Si aproximamos el geoide terrestre por una esfera perfecta, las curvas 
geodésicas son tanto los meridianos (geodésicas que pasan por ambos polos en 
todas direcciones) como los círculos máximos que se puedan trazar en 
cualesquiera otros puntos y direcciones. El ecuador terrestre sería, en esta 
aproximación, una geodésica, pero no los restantes paralelos, cuyo vector de 
curvatura no estaría dirigido nunca en la dirección del centro de la esfera. 
 
Vemos, además, que en el sistema de coordenadas terrestre, latitud (norte-
sur), y longitud (este-oeste), las líneas coordenadas ortogonales a las 
geodésicas son los paralelos, que usamos para medir la latitud, y los 
meridianos, curvas geodésicas, para medir la longitud. Es decir, una de las dos 
familias de curvas coordenadas, en este caso los meridianos, está formada por 
líneas geodésicas. 
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Con esta idea, podemos definir sistemas de coordenadas en una superficie S 
cualquiera, es decir, procurando fijar dos familias de curvas de modo que una 
de ellas esté formada por geodésicas y la otra por sus curvas ortogonales . 

 
 
Los sistemas de coordenadas geodésicas 
 
 

 

En forma paramétrica, la descripción de los 
puntos de una superficie puede hacerse mediante 
dos familias de curvas entre sí ortogonales 
 
El estudio de las geodésicas se simplifica 
extraordinariamente si elegimos sistemas de 
coordenadas en los que una de las dos familias 
entre sí ortogonales son geodésicas. 
 
Un sistema de coordenadas geodésicas para una 
superficie S está formado por un conjunto de 
curvas geodésicas (en las que, por ejemplo, 
u2=cte) y un conjunto de trayectorias ortogonales 
a las mismas (en las que  u1=cte). 
 

Construcción de un sistema de coordenadas geodésicas para una superficie S dada:  
 

 

 
Dada una curva arbitraria C, 
geodésica o no, contenida en la 
superficie S, sabemos que por 
cada uno de sus puntos y en 
dirección ortogonal a la misma 
pasa una geodésica. Por tanto, 
podemos obtener una familia de 
curvas geodésicas a partir de la 
curva C, que llamaremos curvas 
en las que u2=cte. A partir de esta 
familia de geodésicas u2=cte 
podemos obtener por todos sus 
puntos las trayectorias orto-
gonales, que serán las curvas 
u1=cte, una de ellas es la misma 
curva C. 

En el caso particular de que las geodésicas u2=cte pasen por un mismo punto O se 
le denominaría Sistema de coordenadas geodésicas polares, de polo el punto O. 
 
En el caso de un sistema de coordenadas geodésicas polares, las trayectorias 
ortogonales a las geodésicas son curvas cerradas que podemos llamar 
“circunferencias geodésicas” y que, en el caso de una superficie esférica, son 
realmente circunferencias ordinarias concéntricas. 
 
 



Geodésicas-II. Las coordenadas geodésicas                             Carlos S. Chinea 

 5 

 
 
Un ejemplo clásico de coordenadas geodésicas polares nos lo ofrece la superficie 
esférica. Eligiendo un punto cualquiera P de la superficie de la esfera, las 
geodésicas que pasa por tal punto son círculos máximos, mientras que las 
trayectorias perpendiculares son circunferencias contenidas en la superficie esférica  
concéntricas en P. 
 
Podemos obtener un ejemplo más cercano imaginando que la superficie de nuestro 
planeta, el geoide terrestre, es una esfera perfecta. Entonces, todos los círculos 
máximos que pasan por el polo norte son geodésicas que también pasan por el polo 
sur, y las trayectorias ortogonales son los círculos paralelos, que no son círculos 
máximos, salvo el círculo ecuatorial. Este es el sistema de coordenadas geográficas 
terrestres, en el que los meridianos, geodésicas, sirven para medir la longitud 
geográfica, y los paralelos, trayectorias ortogonales, miden la latitud. 
 
 
 
 
La longitud de un arco de curva en coordenadas geodésicas 
 
La primera forma fundamental de la teoría de superficies admite una expresión muy 
sencilla en coordenadas geodésicas, puesto que se elimina el coeficiente g12, ya que 
es nulo, por ser ortogonales las dos familias de trayectorias, y también se puede 
eliminar el término g11 mediante un cambio sencillo de parámetros, como se 
muestra en el siguiente teorema. 
 
 
Teorema 03: En un sistema de coordenadas geodésicas, donde la familia de las 
geodésicas son las curvas en que u2=constante, la longitud de arco viene dada por 
 

2
222

2
1

2 dugduds +=  
Demostración: 
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2 2 dugdudugdugds ++= , y  tratándose  de  trayectorias 

perpendi-culares, será 012 =g , por lo cual 2
222

2
111

2 dugdugds += . 
 
Por otra parte,  como  las trayectorias u2 = constante son geodésicas, la correspon-
diente curvatura geodésica será nula, por lo que, usando la expresión [1.2d] 
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o sea, el coeficiente g11 solo depende de u1. Por lo cual, haciendo un cambio de 
parámetro de la forma    
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por tanto, podemos asumir en adelante que, en un sistema de coordenadas 
geodésicas la longitud de arco sobre la superficie puede expresarse por 
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donde las curvas geodésicas del sistema de coordenadas corresponden a que 
u2=constante. 
 
 
 
Teorema 04: En un sistema de coordenadas geodésicas se verifica: 
 

1) Los arcos de todas las geodésicas comprendidos entre dos trayectorias 
ortogonales dadas tienen la misma longitud. 

2) Si se trazan geodésicas normales a una determinada curva C, y se trazan 
sobre ellas arcos de igual longitud a partir de C, el lugar de los extremos de 
estos arcos se encuentra en una trayectoria ortogonal a las geodésicas. 

 
Demostración: 
 

1) Sea un sistema de coordenadas geodésicas en el que la familia de las 
geodésicas sean las curvas u2=constante. Se tiene entonces para la longitud 
del arco de geodésica: 
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          O sea, 1duds = , por lo que la longitud del arco de geodésica  bua ≤≤ 1  es: 
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          Por lo que, para cualquier trayectoria geodésica u2=constante, abs b
a
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2) Es obvio, por 1) 
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En el ejemplo aproximativo del cuerpo del 
planeta como una esfera perfecta, se cumple, 
según este teorema, que la distancia entre 
dos paralelos dados, medida a lo largo de un 
meridiano cualquiera, es constante. 
 

distancia A1B1 = distancia A2B2 

 
 
 
 
La métrica y las coordenadas geodésicas 
 
Teorema 05: Dado el sistema de coordenadas geodésicas 
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si tomamos como parámetro u2 la longitud de arco a lo largo de la curva u1=0, 
geodésica, se verifica que 
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Demostración: 
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Teorema 06: Dado el sistema de coordenadas geodésicas polares 
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si tomamos como parámetro u2 el ángulo que forma cada geodésica con la 
geodésica u2=0, se verifica 
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Demostración: 
 
Para cada geodésica u2=constante, la longitud de un arco sobre la misma a partir 
del polo es ds=du1. Los puntos u1=constante “equidistan”, por tanto, del polo, a lo 
largo de cada geodésica, por lo que estas trayectorias se pueden llamar 
“circunferencias geodésicas”, y que en el caso particular de una superficie esférica 
son circunferencias ordinarias. 
 
Si u2 es el ángulo que forma la geodésica dada con la geodésica u2=0, entonces 
cuando u1 tiende a cero, las circunferencias geodésicas tienden a ser 
circunferencias ordinarias, por lo que el arco s correspondiente al ángulo u2 tiende a 
aproximarse al producto del ángulo por el radio: u2.u1. 
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usando la regla de L´Hôpital para el cálculo del límite: 
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ahora bien, para que sea cierto ese resultado, ha de ser 1),0( 222
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Los símbolos de Christoffel en coordenadas geodésicas 
 
Supongamos un sistema de coordenadas geodésicas, Sg, formado por dos familias 
de curvas ortogonales sobre una superficie regular S, u2= cte (geodésicas) y u1= 
cte (trayectorias ortogonales a las geodésicas). Se verifican entonces los dos 
teoremas siguientes para las expresiones de los símbolos de Christoffel. 
 
 
 
Teorema 07:  
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a) Para los símbolos de Christoffel de primera especie se verifican, las siguientes 
expresiones 
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b) En coordenadas geodésicas, se tienen los siguientes valores: 
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Demostración: 
 
a)  De ser iiii grr =

. , se tiene: 
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 b)  De  ser ijji grr =
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  -    Desglosando para valores i,j =1,2: 
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 -   Finalmente, como en coordenadas geodésicas es 1,0 1112 == gg , será: 
 

2

22

1

22

1

22

2
1)2,22(

2
1)2,12(0)2,11(

2
1)1,22(0)1,12(0)1,11(

u
g

u
g

u
g

∂

∂
=

∂

∂
==

∂

∂
−===

 

 
 
 
Teorema 08: 
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Para los símbolos de Christoffel de segunda especie se verifican, en coordenadas 
geodésicas, las siguientes expresiones 
 

2

22

22

2
22

1

221
22

1

22

22

2
12

1
12

2
11

1
11

2
1

2
1

2
1

000

u
g

gu
g

u
g

g ∂
∂

=Γ
∂
∂

−=Γ
∂
∂

=Γ

=Γ=Γ=Γ
 

  
Demostración: 
 
Usaremos la definición de símbolos de segunda especie, y los valores obtenidos en 
el teorema anterior para los símbolos de primera especie. 
 

Por definición  ( ) hkk
ij gkij .,=Γ , donde son 

g
gg

g
gg

g
gg 121211222211 ,, −===  los 

elementos de la matriz inversa de gramm (matriz (gij)). 
 
Se tiene, entonces: 
 

000).2,11().1,11().2,11().1,11( 122212111
11 =−=−=+=Γ

g
g

g
ggg  

000).2,11().1,11().2,11().1,11( 111222122
11 =+−=+−=+=Γ

g
g

g
ggg  

000).2,12().1,12().2,12().1,12( 122212111
12 =−=−=+=Γ

g
g

g
ggg  

1

22

2222

11111222122
12 2

1)2,12().2,12(0).2,12().1,12().2,12().1,12(
u
g

ggg
g

g
g

g
ggg

∂
∂

==+−=+−=+=Γ

1

22

2222

22122212111
22 2

1)1,22(0).1,22().2,22().1,22().2,22().1,22(
u
g

ggg
g

g
g

g
ggg

∂
∂

−==−=−=+=Γ

2

22

2222

22111222122
22 2

1)2,22().2,22(0).2,22().1,22().2,22().1,22(
u
g

ggg
g

g
g

g
ggg

∂
∂

==+=+−=+=Γ

 
 
 
 
 
La curvatura total de Gauss en coordenadas geodésicas 
 
 
Teorema 09: La curvatura total de Gauss en coordenadas geodésicas viene dada 
por  
 

2
1

22
2

22

1
u
g

g
K

∂

∂
−=  

expresada en un sistema de coordenadas geodésicas en las que las geodésicas son 
las curvas u2=cte, y las trayectorias ortogonales son las curvas u1=cte. 
 
Demostración: 
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El Teorema Egregium de Gauss, nos permite expresar la curvatura total de Gauss 
en función de los símbolos de Christoffel de la manera siguiente 
 

⎥
⎦

⎤
⎢
⎣

⎡
ΓΓ−ΓΓ+ΓΓ−ΓΓ+Γ

∂

∂
−Γ

∂

∂
−= 2

22
2

11
2

12
2

12
2

12
1
11

2
11

1
12

2
11

2

2
12

111

1
uug

K  

 
se tiene entonces, usando el teorema 08 anterior y haciendo g11=1 (por tratarse de 
coordenadas geodésicas): 
 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+−+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂

∂

∂
−= 0

2
1000

2
1

1
1

2

1

22

221

22

221 u
g

gu
g

gu
K  

o sea: 
 

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+

∂

∂
−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂

∂

∂
−=

2

1

22
2
22

2

1

22
2
22

2
1

22
2

22

2

1

22
2
221

22

221 4
1

2
1

2
1

4
1

2
1

u
g

gu
g

gu
g

gu
g

gu
g

gu
K

 

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
−

∂

∂
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+

∂

∂
−=

2

1

22

2222
2
1

22
2

2222

2

1

22
2
22

2
1

22
2

22 4
1

2
11

4
1

2
1

u
g

ggu
g

ggu
g

gu
g

g
 

 

2
1

22
2

221

22

22122

1
2

11
u
g

gu
g

gug ∂

∂
−=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂

∂

∂
=  

 
 
 
 
Las curvas de longitud mínima. Una condición necesaria 
 
En los primeros estudios sobre curvas geodésicas se definía a la curva geodésica 
como una curva tal que la longitud de arco sobre ella entre dos puntos dados de la 
misma es mínimo. Sin embargo, esta definición no resulta precisa si tenemos en 
cuenta que, por ejemplo, en la superficie esférica, dos puntos dividen al circulo 
máximo que los contiene en dos arcos, y solo uno es el que da la distancia mínima 
entre ambos puntos sobre la esfera (salvo, claro, que los dos puntos elegidos sean 
extremos de un mismo diámetro). 
 
La geodésica, pues, no es equivalente a la curva de longitud mínima. Para serlo 
tendría que verificarse tanto la condición necesaria (si la longitud sobre un arco 
dado entre dos de sus puntos es mínima, entonces la curva que contiene a tal arco 
es una geodésica), como la condición suficiente (si la curva que contiene a dos 
puntos dados es una geodésica, entonces ello es suficiente para afirmar que  la 
longitud del arco entre ambos puntos, medido sobre ella, es de longitud mínima). 
 
La condición suficiente no se verifica. Sin embargo, podemos probar un teorema 
por el cual sí es posible afirmar que si el arco de curva entre dos puntos es de 
longitud mínima, entonces necesariamente la curva es una geodésica. 
 
Condición necesaria: 
 
Teorema 10: Si el arco de curva contenida en una superficie es de longitud mínima 
entre dos puntos de la misma, entonces tal arco está contenido en una geodésica. 
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Demostración: 

 
 

 
Consideremos dos familias de curvas 
ortogonales, u2=constante y u1=constante. 
Consideremos la curva u2=0 y fijemos 
sobre ella dos puntos A y B, que 
corresponderán, respectivamente a u1=a y 
u1=b, verificándose, por consiguiente, que 
u2(a)=0, y u2(b)=0. 
 
Llamemos s a la longitud del arco de curva 
C sobre u2=0, comprendido entre A y B, y 
consideremos otra curva C’ que pase 
también por los puntos A y B, obtenida 
desde C mediante una variación 
infinitesimal δφ , que  hace  que  el  arco de 

de curva entre A y B medido sobre C’ tenga la longitud ss δ+ , cuya ecuación es 
u2=u2(u1). 
 
Puesto que la diferencial de la longitud de arco en general es 

2
22122

2
12111

2 ).,().,( duuugduuugds += , ya que 012 =g  por ser curvas ortogonales, se 
tiene: 

Arco de curva entre A y B, sobre C:  1111 .)0,( duugs
b

a
∫=  

Arco de curva entre A y B, sobre C’: ∫ +=+
b

a

duuugduuugss 2
22122

2
12111 ).,().,(δ  

 
Simplifiquemos esta última expresión: 
 

( )∫ ∫ +=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=+

b

a

b

a

duuuuguugdu
du
duuuguugss 1

2
1

2
2212221111

2

1

2
21222111 .).,(),(.).,(),( δ  

 
A fin de reducirla a la curva u2=0, y teniendo en cuenta el desarrollo 

...
),(

)0,(),(
02

2111
21112111

2

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+=

=uu
uuguuguug δ ,  y que 0)(

0
lim 12

1

=

→

uu
u

  

se tiene: 
 

haciendo )0,( 11111 ugg = , y también la aproximación ,
2

11 xx +≈+  para 0→x . 

Resulta: 
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∫

∫

∫

∫∫

=

=

=

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
=

=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+=

=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+=

=−
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+=

b

a u

b

a u

b

a u

b

a

b

a u

du
u
uug

g
u

dug
u
uug

g
ug

dug
u
uug

g
ug

dugdu
u
uug

g
ugs

1
02

2111

11

2

111
02

2111

11

2
11

111
02

2111

11

2
11

1111
02

2111

11

2
11

2

2

2

2

),(
2

.
),(

2

.
),(

2
1

..
),(

2
1

δ

δ

δ

δ
δ

 

 

si sustituimos ahora 
22

2 g
u δφ
δ =  y 

11
1 g

dsdu = : 

 

( ) dsKds
u
uug

gg
s

u

b

a
g

b

a u

..
),(

2
1

002

2111

2211 22

δφδφδ
==

∫∫ =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
=  

 

Si s es mínima, entonces :0=sδ      ( ) 0.
02

==
=

∫ dsKs
u

b

a
g δφδ , es decir: 0)( 02

==ugK , 

lo que indica que la longitud s mínima corresponde a una curva con curvatura 
geodésica nula, esto es, a una línea geodésica. 
 
En definitiva, si el arco de curva entre dos puntos es de longitud mínima, entonces 
la curva que lo contiene es un geodésica. 
 
Las geodésicas como curvas autoparalelas 
 
Sea la superficie S de ecuación vectorial  ),( 21 uurr 

= , esto es: 
 

⎪
⎩

⎪
⎨

⎧

=

=

=

),(
),(
),(

21

21

21

uuzz
uuyy
uuxx

 

 
y sea la curva C contenida en S cuyo vector tangente en cada punto viene dado por 
 

'
22

'
11

2
2

1
1 .... urur

ds
dur

ds
dur

ds
rdt 


+=+==  

 
donde es s la longitud de arco a lo largo de la curva C. 
 
Consideremos un vector cualquiera )(sv perteneciente al plano tangente a la curva 
en cada punto, es decir, que se pueda expresar como combinación lineal de los 
vectores 1r


 y 2r


. O sea: 
 

)(.)(.)( 2211 svrsvrsv 
+=  
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)(1 sv y )(2 sv son, por consiguiente, las componentes del vector con respecto a 1r


 y 

2r


. 
 
Definición: Se llama derivada covariante del vector )(sv  a lo largo de la curva C, a 
la expresiones 
 

                 ∑Γ+=
jh

hj
i
jh

ii usv
ds
sdv

Ds
sDv ').(

)()(
         2,1=i  

 
 
Definición: Se dice que )(sv  se transporta paralelamente a sí mismo, a lo largo de 
la curva C, si la derivada covariante de )(sv a lo largo de C es nula: 
 

                 0).()()( ' =Γ+= ∑
jh

hj
i
jh

ii usv
ds
sdv

Ds
sDv

         2,1=i  

 
Definición: Una curva C contenida en una superficie S se dice que es autoparalela si 
es su propio vector tangente el que se transporta paralelamente a sí mismo a lo 
largo de C. 
 
 
Teorema 11: Las curvas autoparalelas de una superficie S son sus geodésicas. 
 
Demostración: Es inmediato, si tenemos en cuenta que el vector tangente es 

'
22

'
11 .. ururt 
+= , por lo que sus componentes respecto a 1r


 y 2r


son )('1 su y )('
2 su , lo 

que nos indica que la derivada covariante del vector tangente viene dada por las 
ecuaciones: 

∑Γ+=
jh

hj
i
jh

ii uu
ds
du

Ds
Du ''

''

    2,1=i  

 

Si la curva es autoparalela será 0
'

=
Ds
Dui    2,1=i , o bien: 

 

0''
'

=Γ+∑
jh

hj
i
jh

i uu
ds
du     2,1=i  

 
que es la ecuación de las geodésicas. 
 
 
 
 
 
 
 
 
 
 
 
 
 



Geodésicas-II. Las coordenadas geodésicas                             Carlos S. Chinea 

 15 

 
 
Bibliografía 
 
ABELLANAS, P., (1961). Geometría Básica, Editorial Romo, Madrid 
ABISMAN, I.: A first course in differential geometry. Marcel Dekker, 1984 
CHOQUET-BRUHAT, Y. (1968). Geometrie Differentielle et systemes exterieurs. 
Dunod, Paris 
DO CARMO, M.P., Geometría Diferencial de Curvas y Superficies. Alianza 
Universidad, Madrid, 1990 
FEDENKO, A.S.: Problemas de Geometría Diferencial. Ed. Mir, Moscú. 1981  
HICKS, N.J.: Notas sobre Geometría Diferencial. Ed. Hispano Europea, 1974  
HSIUNG, C.C. (1981).  A first course in differential geometry. John Wiley.  
KLINGENBERG, W., Curso de Geometría diferencial, Alambra, 1978 
LELONG-FERRAND, J. (1963), Geometrie Differentielle. Masson and Cie., Paris. 
LIPSCHUTZ, L.M., Theory and problems of differential geometry. McGraw-Hill, 1969  
MILLMAN, R.S. , Parker, G.D. (1977).  Elements of differential geometry. Prentice 
Hall,  
MONTESDEOCA, A.: Apuntes de Geometría Diferencial de Curvas y Superficies. Col.  
Textos Universitarios, 1996  
MONTIEL, S.; Ros, A.: Curvas y Superficies. 1996  
O'NEILL, B.: Elementos de Geometría Diferencial. Limusa-Wiley, 1972  
STOKER, J.J., Differential Geometry, Wiley Interscience, 1981 
STRUICK, D.J. (1961)  Geometría diferencial clásica. Aguilar Ediciones, Madrid 

 
 
  
 
 
 

 

 

 
 
ANEXO: UNAS RELACIONES BÁSICAS ENTRE LOS VECTORES TANGENTE, 
NORMAL, LA MÉTRICA Y LOS SÍMBOLOS DE CHRISTOFFEL 
 
Se verifican algunas relaciones que nos permiten demostrar las propiedades y 
relaciones básicas de la curvatura geodésica y las ecuaciones de las líneas 
contenidas en la superficie que presenten estas características. 
 

A1. Se verifica que gNrr =∧
 ).( 21 , siendo Ni

u
rr
i

i


 ,2,1, =

∂

∂
= es el vector 

unitario normal a la superficie en el punto dado, y g es el determinante de la matriz 
que definen los coeficientes de la primera forma fundamental )..( 2

122211 gggg −=  
 
Demostración: 
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( ) ( )
( )

( )

( ) ( ) ( )
g
rrN

g
rr

ggg
rr

rrrr
rr

rr
rr

senrr
rr

rr
rrN

21
2

21
2
122211

2
21

22
2

2
1

2
2

2
1

2
21

22
2

2
1

2
21

22
2

2
1

2
21

2

1

212

coscos1
















∧
=→

∧
=

−

∧
=

=
−

∧
=

−

∧
=

∧
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∧

∧
=

θθθ
 

 

( ) ( )( ) g
g
g

g
ggg

g
senrr

g
rr

g
rrrrNrr ==

−
==

∧
=

∧
∧=∧

2
122211

22
2

2
1

2
2121

2121 .
θ




 

[A1.1] 
 
A.2. Se verifican las relaciones 
 

)2,(
)1,(1,

)2,(
)1,(1

21

112

22

121

ijg
ijg

ggij
gij

g ijij =Γ=Γ  

donde son 2,1,,,,),,( =Γ mkjikij m
ij  los símbolos de Christoffel de 1ª y 2ª especie, 

respectivamente. 
 
Demostración: 
 
De la definición de los símbolos de Christoffel:    ( ) ( ) hkh

ijhh
h
ij gkijgkij .,., =Γ→Γ=  

o sea: 
( ) ( )
( ) ( ) 22122

21111

2,1,
2,1,
gijgij
gijgij

ij

ij

+=Γ

+=Γ
 

La inversa de la matriz métrica: 

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

=

−=

=

→⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

g
gg

g
gg

g
gg

gg
gg

ggg
gg

gg
gg

1122

1212

2211

1112

2122
1

2221

1211
2221

1211 1
 

por lo cual: 
 
 

( ) ( )[ ] ( )
( )

( ) ( )[ ] ( )
( )2,

1,12,1,1
2,
1,12,1,1

12

11
1112

2

22

12
1222

1

ijg
ijg

g
gijgij

g

gij
gij

g
gijgij

g

ij

ij

=+−=Γ

=−=Γ
 

 

A.3. Siendo 2,1,,,2,1,
2

1

=
∂∂

∂
==

∂

∂
= ki

uu
rri

u
rr

ki
iki







, se cumple ),(. kijrr kij =


 

 
Demostración: 
 
De las Ecuaciones de Gauss: 
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Nlrrr ijijijij


+Γ+Γ= 2

2
1

1  

(lij: coeficientes de la segunda forma fundamental) 
 
multiplicamos escalarmente por 1r


 y por 2r


,con lo cual se tiene que, habida cuenta 

de que 2,1,0. == iNri


: 

12
2

11
1

1. ggrr ijijij Γ+Γ=


 

22
2

12
1

2. ggrr ijijij Γ+Γ=


 

o sea 
),(. kijgrr kh

h
ijkij =Γ=


 

 
 

A.4. Se verifica que  ( ) 2,1,,,,..)1(. =Γ−=∧ hkjigNrr h
jk

h
jki


 de modo que sea 

⎩
⎨
⎧

=

=
=

1,2
2,1

isi
isi

h , y   2,1,,,2,1,
2

1

=
∂∂

∂
==

∂

∂
= ki

uu
rri

u
rr

ki
iki







 y 2,1,,, =Γ mjim
ij  son 

los símbolos de Christoffel de 2ª especie. 
. 
Demostración: 
 
Teniendo en cuenta que se verifica la igualdad vectorial 
 

( )( ) ( )( ) ( )( )dacbdbcadcba
 ..... −=∧∧  

se tiene 

( ) ( ) ( ) ( )( ) ( )( )
g

rrrrrrrr
g
rrrrNrr ijkjki

jkijki
212121 ...

..


 ∧−
=

∧
∧=∧  

y siendo, por el párrafo anterior 
( )
( )⎩

⎨
⎧

=

=

2,.
1,.

2

1

ijrr
ijrr

jk

jk



 

será 
 

( ) ( ) ( )( )
( )
( ) 2

1
21 2,

1,1.1,2,1.
i

i
iijki gjk

gjk
g

gjkgjkg
g

Nrr −
=−=∧


 

 
 

si i=1,   ( ) ( )
( )

2

2

1
1 ..

2,
1,1.. jk

i

i
jk g

jkg
jkg

g
gNrr Γ==∧


 

si i=2,   ( ) ( )
( )

1

22

21
2 .

2,
1,1.. jkjk g

gjk
gjk

g
gNrr Γ=
−

=∧


 

En definitiva: 
 

( ) 2,1,,,,..)1(. =Γ−=∧ hkjigNrr h
jk

h
jki


 

 

⎩
⎨
⎧

=

=
=

1,2
2,1

isi
isi

h  
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A.5. Si las líneas principales de curvatura son ortogonales, esto es, si g12=0, se 
cumplen las siguientes relaciones: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂−
=Γ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂−
=Γ

1

22

11

1
22

2

11

22

2
11

2
1

2
1

u
g

g

u
g

g
 

Demostración: 
 
De la definición de los símbolos Christoffel, ( ) ( ) hkh

ijkh
h
ij gkijgkij .,., =Γ→Γ= , se 

tiene: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
11

122212111
22

22

111222212
11

1,221,221,221,221,22

2,112,111,112,111,11

gg
g

g
ggg

gg
g

g
ggg

=
−

+=+=Γ

=+
−

=+=Γ
 

Por otra parte, de ser: 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
−

∂

∂
+

∂

∂
=

k

ij

j

ik

i

jk

u
g

u
g

u
g

kij
2
1,  

 

( )

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
−=

1

22

2

11

2
11,22

2
12,11

u
g
u
g

 

por tanto: 

                  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂−
=Γ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂−
=Γ

1

22

11

1
22

2

11

22

2
11

2
1

2
1

u
g

g

u
g

g
           [A5.1] 

 
 


