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GEODESICAS-II
Las coordenadas geodésicas

Estudiamos en esta segunda parte de las Geodésicas sus ecuaciones,
coordenadas geodésicas y curvas de longitud minima, como continuacion
del articulo GEODESICAS-I. La curvatura geodésica, donde exponemos las
ideas basicas que definen el concepto. Se afade al final un pequeiio anexo
sobre las relaciones basicas entre los vectores tangente, normal, la métrica
y los simbolos de Christoffel.

Ecuacion de las geodésicas

Las lineas geodésicas son aquellas curvas contenidas en la superficie en las que la
curvatura geodésica es nula. Por ello el vector normal 7z a la curva en el triedro de

Frenet tiene la misma direccion que el vector N normal a la superficie en cada
punto. Por consiguiente, se verifica que

AF =0, i=12
o bien
d—t.F, =0,i=12
ds
De ser

- . s
l=—=1rn—+r,—=nu, +ru
1 2 171 27217
ds ds s

se tiene que es:
dt
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g—r”ul+r22u2+2r12ulu2+rlu (U 2—2rjkujuk+rhu h

Js

por lo cual:

7 = G W W20 G W s = (22
+ 2(12’1)”'1 u'y+g U +g,u'y = Fl’;lgmlu'lz +F2”;gm1”§ +2I, g, ' u'y+ g u' +g,u", =

1 2 2 (1 2 2 1 2 ' '
= (rngn +17,8, )""1 +(r22g11 +1,82, )" 2+2( &t I‘12g21>”'1 u'y+g u +g,u", =
= gll[(rlllu'lz +I‘212u'§ +2r112”'1 u', )+ ”1]"‘ glz[(rlzlu'lz +r222u'§ +E22”'1 ”'2)*’ ”2]= 0
[2.1a]
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dr . . . oo .o . .

g-rz = (7’11-’”2 )“'12 +(r22-r2 )”'g +2(”12-”2 )""1 u'y +(’"1 -+ )”"1 +(”2-’”2 )””2 = (1 1>2)”'12+(22a2)“€+

+ 2(12>2)“'1 u'y+gu" +gu", = 1"11«gmzl/"2 +F2n;gm2”€ +205 g, ' u'y+ g u" + gyu'"y =
(rllng + FlngZ» (r22g12 + Iﬂzzgzz)“'2 +2(r12g12 + rlzzgzz)’*" u'y+gu" +gpu", =

—glz[(l’lllu'2+rzlzu'2+2I‘lzu u' )+u1]+ gzz[(I‘”u'fH“f Clou' u' )+u;]=0
[2.1b]

puesto que los gi1, 912, 922 SOn independientes, se tiene, anulando coeficientes:

1,2, 02 "
(F“u +,us+2T ' u' )+u1 =0

de [2.1a]: 5 )
T’ + o'+ u'y )+ u, = 0

1,2, 02 "
(F“u +Du s +2T ' u' )+u1 =0

de [2.1b]: 5 )
o't + o' +Tou', u2)+u2 =0

En definitiva:

F’ku u' +u" =0, m=12 [2.1c]
T
(ecuacion de las geodésicas)

estas expresiones representan, por simetria de indices, una sola ecuacion.

Existencia de geodésicas

A la vista de lo anterior, nos podemos preguntar si existen sobre una superficie
cualquiera curvas en las que la curvatura geodésica kqy es nula. ¢éEn un punto
cualquiera P de una superficie regular S existe siempre alguna geodésica? éen
qué casos?. Veremos a continuacion que si existen siempre estas lineas,
mediante el teorema de existencia de ecuaciones diferenciales ordinarias de
segundo orden.

Teorema 02: La ecuacion de las geodésicas puede expresarse como una
ecuacion diferencial ordinaria de 2° orden de la forma

V'= AP +By”+y'+C  [2.2a]
Demostracion:

Basta hacer un cambio de parametros en la ecuacion de las geodésicas [2.1c]:

. du, du,du, . .
u 2 = = = uzu‘]’
ds du, ds
w _d(duy\ d ( ) di, . . . du,du, . 2.
u 2_d s guzul =Eul+u2ul d—ul—sl/ll+lxl Z/ll =1 U +u,u
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sustituyendo en [2.1c] para m=2:
2 42 2 2 42 2 . 12 e g2 . L
I u'y +5u5u'y 421 u,u'y +iu'y +u,u, =0

sustituimos ahora u, por su expresiéon en la ecuacién de las geodésicas para
m=1:

12 2 2 2 2 - .. . 1 12 1 12 1 ] _
u, (Fll + u; +210u, +u2)+u2(—rnu | —us 20 u 2)_ 0
de donde resulta, sustituyendo de nuevo u2 =L'Izui:
2 (12 ) 2. . . L2 a2 2 A

u, (Fll + u; +210u, +u2)+ uZ(_rllul =D uyu'y =21 u,u', )_ 0

y al simplificar, extrayendo el factor comun:
2 13 2 )2 2 ). 2 - |
u, |__F22”2 +(F22 _2F12)42 +(2F12 _rll)'lz +1I, +”2J_0

y se obtiene finalmente la ecuacién diferencial ordinaria de segundo orden de la
forma indicada [2.2a]:

U, = lezag + (_ rzlz + 2F112 }’5 + (_ 2F122 + Flll )’22 - rlzl

Corolario: Por cada uno de los puntos de una superficie y en cada direccion pasa
una curva geodésica, la cual queda determinada univocamente mediante un
punto de referencia y la tangente correspondiente a su direccion.

Demostracion: trivial, por ser la ecuacion diferencial [2.2a] de segundo orden vy
por el teorema de existencia de ecuaciones diferenciales ordinarias de 2° orden.

Ejemplo:

Si se trata de una superficie esférica, por cada punto P y en una direccion dada
pueden ser trazadas infinitas curvas contenidas en la superficie, pero de todas
esas infinitas curvas, solo una es geodésica: el circulo maximo que pasa por P
en la direccion dada, ya que su curvatura es normal a la superficie (el vector de
curvatura del circulo maximo tiene la direccién del centro de la esfera).

Si aproximamos el geoide terrestre por una esfera perfecta, las curvas
geodésicas son tanto los meridianos (geodésicas que pasan por ambos polos en
todas direcciones) como los circulos maximos que se puedan trazar en
cualesquiera otros puntos y direcciones. El ecuador terrestre seria, en esta
aproximacion, una geodésica, pero no los restantes paralelos, cuyo vector de
curvatura no estaria dirigido nunca en la direccién del centro de la esfera.

Vemos, ademas, que en el sistema de coordenadas terrestre, latitud (norte-
sur), y longitud (este-oeste), las lineas coordenadas ortogonales a las
geodésicas son los paralelos, que usamos para medir la latitud, y los
meridianos, curvas geodésicas, para medir la longitud. Es decir, una de las dos
familias de curvas coordenadas, en este caso los meridianos, estd formada por
lineas geodésicas.
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Con esta idea, podemos definir sistemas de coordenadas en una superficie S
cualquiera, es decir, procurando fijar dos familias de curvas de modo que una
de ellas esté formada por geodésicas y la otra por sus curvas ortogonales .

Los sistemas de coordenadas geodésicas

En forma paramétrica, la descripcidon de los
puntos de una superficie puede hacerse mediante
dos familias de curvas entre si ortogonales

El estudio de las geodésicas se simplifica
extraordinariamente si elegimos sistemas de
coordenadas en los que una de las dos familias
entre si ortogonales son geodésicas.

Un sistema de coordenadas geodésicas para una
superficie S estda formado por un conjunto de
Dos familias de curvas curvas geodésicas (en las que, por ejemplo,
ortogonales definen uy=cte) y un conjunto de trayectorias ortogonales
un sistema de coordenadas a las mismas (en las que uj=cte).

Construccion de un sistema de coordenadas geodésicas para una superficie S dada:

Trayectorias geodésicas ortogonales Dada una curva arbitraria C,
a € por cada uno de sus puntos geodesica o no, contenida en la
"“:,7“-‘ N superficie S, sabemos que por

\ [ cada uno de sus puntos y en

' { 11| | direccion ortogonal a la misma
! | | ;.
pasa una geodésica. Por tanto,

| ,_._ﬁ_._,_.‘_ A t
= i ! —— podemos obtener una familia de

,,,._——-‘ L ' j | [0 5 e curvas geodésicas a partir de la
S e~ curva C, que llamaremos curvas
.’9,,-‘—__.._‘_&___3__'_.; ‘_H-.-.\(wva t enlas que uy=cte. A partir de esta

S | | l | ~—._arbitraria  familia de geodésicas up=cte

¥ = = nEHl B ""*1““ — podemos obtener por todos sus
o~ S S T oy o ey o S S =~ Lurvas .
=l | S — uiECte puntos las trayectorias orto-
Sy o o = T — gonales, que seran las curvas
- { l ] ‘ ui=cte, una de ellas es la misma

‘ ‘ \ curva C.

En el caso particular de que las geodésicas u,=cte pasen por un mismo punto O se
le denominaria Sistema de coordenadas geodésicas polares, de polo el punto O.

En el caso de un sistema de coordenadas geodésicas polares, las trayectorias
ortogonales a las geodésicas son curvas cerradas que podemos Illamar
“circunferencias geodésicas” y que, en el caso de una superficie esférica, son
realmente circunferencias ordinarias concéntricas.
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En un sistema de coordenadas
geodésicas polares, las geodésicas
pasan por un punto que se
llama polo del sistema

Un ejemplo clasico de coordenadas geodésicas polares nos lo ofrece la superficie
esférica. Eligiendo un punto cualquiera P de la superficie de la esfera, las
geodésicas que pasa por tal punto son circulos maximos, mientras que las
trayectorias perpendiculares son circunferencias contenidas en la superficie esférica
concéntricas en P.

Podemos obtener un ejemplo mas cercano imaginando que la superficie de nuestro
planeta, el geoide terrestre, es una esfera perfecta. Entonces, todos los circulos
maximos que pasan por el polo norte son geodésicas que también pasan por el polo
sur, y las trayectorias ortogonales son los circulos paralelos, que no son circulos
maximos, salvo el circulo ecuatorial. Este es el sistema de coordenadas geograficas
terrestres, en el que los meridianos, geodésicas, sirven para medir la longitud
geografica, y los paralelos, trayectorias ortogonales, miden la latitud.

La longitud de un arco de curva en coordenadas geodésicas

La primera forma fundamental de la teoria de superficies admite una expresion muy
sencilla en coordenadas geodésicas, puesto que se elimina el coeficiente gi,, ya que
es nulo, por ser ortogonales las dos familias de trayectorias, y también se puede
eliminar el término g;; mediante un cambio sencillo de parametros, como se
muestra en el siguiente teorema.

Teorema 03: En un sistema de coordenadas geodésicas, donde la familia de las
geodésicas son las curvas en que u,=constante, la longitud de arco viene dada por

2 2 2
ds” =du; +g,du;
Demostracion:

De ser ds’ = g, du} +2g,,du,du, + g,,du’, y tratdndose de trayectorias

perpendi-culares, serd g, =0, por lo cual ds® = g, ,du; + g,,du; .

Por otra parte, como las trayectorias u, = constante son geodésicas, la correspon-
diente curvatura geodésica sera nula, por lo que, usando la expresion [1.2d]



Geodésicas-II1. Las coordenadas geodésicas Carlos S. Chinea

1 9g,
(k )u2=c o ( )
¢ t 221V8xn du,
tenemos
1 0g,
(A ( )= 0
¢ t 221V8xn ou,
por lo cual es
g -0 _
—=0=g,=g,Ww,)=g,=g,)
ou,

o0 sea, el coeficiente g;; solo depende de u;. Por lo cual, haciendo un cambio de

parametro de la forma
u
“= (g, .d
u, —f 8y -au,
0

sera:
2 *2 * 2
ds” =du,” + g,,du,

por tanto, podemos asumir en adelante que, en un sistema de coordenadas
geodésicas la longitud de arco sobre la superficie puede expresarse por

ds® =dul + g,,du’

donde las curvas geodésicas del sistema de coordenadas corresponden a que
u,=constante.

Teorema 04: En un sistema de coordenadas geodésicas se verifica:

1) Los arcos de todas las geodésicas comprendidos entre dos trayectorias
ortogonales dadas tienen la misma longitud.

2) Si se trazan geodésicas normales a una determinada curva C, y se trazan
sobre ellas arcos de igual longitud a partir de C, el lugar de los extremos de
estos arcos se encuentra en una trayectoria ortogonal a las geodésicas.

Demostracion:
1) Sea un sistema de coordenadas geodésicas en el que la familia de las

geodésicas sean las curvas u,=constante. Se tiene entonces para la longitud
del arco de geodésica:

ds’ =du’ +g,,.du; =du +0=du
O sea, ds =du,, por lo que la longitud del arco de geodésica a<u, <b es:

b b b
s =fds =fdu1 =b-a
a a
. . . b
Por lo que, para cualquier trayectoria geodesica u,=constante, s| =bh-a
a

2) Es obvio, por 1)
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fLarsel & _},4-""' En el ejemplo aproximativo del cuerpo del

/ ‘|. \ planeta como una esfera perfecta, se cumple,

.‘. segun este teorema, que la distancia entre

' l ' dos paralelos dados, medida a lo largo de un
meridiano cualquiera, es constante.

|
B e de ® ” . l .
K Y [ O { distancia A;B; = distancia A.B;
P

La métrica y las coordenadas geodésicas

Teorema 05: Dado el sistema de coordenadas geodésicas
u, = cte (geodésicas)
u, = cte (tray.ortogonales)
si tomamos como parametro u, la longitud de arco a lo largo de la curva u;=0,

geodésica, se verifica que
\/gzz(oouz) =1

0 g,y (uy,u,) =0
ou,

u; =0

Demostracion:

d’"z2 =g22(0,u2).du§ —du, =8, 0,u,).du, = g,0,u,) =1

1 )
Sila curva u, =0 es geodésica, sera kg = 82 | _ 0
2g5,4/81 \ 9y
Por tanto, es w -0
ou, o

Teorema 06: Dado el sistema de coordenadas geodésicas polares
u, = cte (geodésicas)
u, = cte (tray.ortogonales)

si tomamos como parametro u, el angulo que forma cada geodésica con la
geodésica u,=0, se verifica
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V&€, (0,u,) =0
0 g, (uy,uy) =1

ou,

u; =0

Demostracion:

Para cada geodésica u,=constante, la longitud de un arco sobre la misma a partir
del polo es ds=du;. Los puntos u;=constante “equidistan”, por tanto, del polo, a lo
largo de cada geodésica, por lo que estas trayectorias se pueden Illamar
“circunferencias geodésicas”, y que en el caso particular de una superficie esférica
son circunferencias ordinarias.

Si u, es el angulo que forma la geodésica dada con la geodésica u,=0, entonces
cuando u; tiende a cero, las circunferencias geodésicas tienden a ser
circunferencias ordinarias, por lo que el arco s correspondiente al angulo u, tiende a
aproximarse al producto del angulo por el radio: u,.u;.

s—>uu, si uy—>0

14y f\/ 8 (uy,u,).du,
s =f,/g22(0,u2).du2 —uu, = lim - =1
0

uu
172
u, —>0

usando la regla de L "Hopital para el calculo del limite:

U, 9
fa\/ 8o (1), U, ) du,
0 oy

lim =1
u,

u, —0
o bien

. h
lim fﬁ\/gzz(ulouz)-d”‘z:”z

1
u —0°

d
ahora bien, para que sea cierto ese resultado, ha de ser a—qlgzz(O,uz) =1

1

Los simbolos de Christoffel en coordenadas geodésicas

Supongamos un sistema de coordenadas geodésicas, Sg, formado por dos familias
de curvas ortogonales sobre una superficie regular S, u,= cte (geodésicas) y ui=
cte (trayectorias ortogonales a las geodésicas). Se verifican entonces los dos
teoremas siguientes para las expresiones de los simbolos de Christoffel.

Teorema 07:
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a) Para los simbolos de Christoffel de primera especie se verifican, las siguientes
expresiones

. 1og. . 9g; 19g,

()= 180 ()-8 1o

2 9u;’ ™, 2 du,

1

b) En coordenadas geodésicas, se tienen los siguientes valores:

(iL))=0  (2,1)=0  (22,])= _1dgy
2 Ju,

1 1
(112)=0 (122)=~%2 (27)-1%»
2 du, 2 Ju,
Demostracion:
a) Deser r.r, = g, se tiene:
d J . . _ or or. . -
Si_ L Gr)=F e =270 =
au] ou u; au]
1 ag;

b) De ser nr, =8, se tiene:

ag, 0 Lo 9 L L L
- — 7.7, . - N

Ju, du

i i i

8

= (ij,1) + (ii, j) =
u

dg
0

i, j) = —L — (ij,i) = —L - — =i
(it, J) ” (17,1) 0 2o

i i J

- Desglosando para valoresi,j =1,2:

(LD = 198, (12,1) = 1 9gy, (22,1) = 10g, 10gyn
ou, 2 du, 2 0u, 2 ou
9 9 9
(112)- 282198 qpp) 1%8n g, 108
aul U, 2 aul 2 8u2

- Finalmente, como en coordenadas geodésicas es g,, =0, g,, =1, sera:

3
ALD=0  (12)=0  (2l)=-- 8=

2 Ju,

9 9
(112)=0 (122)=1%82 (2p9)-1%=
2 Ju, 2 du,

Teorema 08:
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Para los simbolos de Christoffel de segunda especie se verifican, en coordenadas
geodésicas, las siguientes expresiones

I, -0 I -0 I, -0
2 1 agzz 1 1dgy 2 1 agzz
2= rzz =75 rzz

2g22 u, 2 ou 2g22 du,

Demostracion:

Usaremos la definicion de simbolos de segunda especie, y los valores obtenidos en
el teorema anterior para los simbolos de primera especie.

Por definicion I} =(jj,k)g", donde son g'" 82 om_8u o2 8 o

b

g g g
elementos de la matriz inversa de gramm (matriz (g;)).

Se tiene, entonces:
I =(1L)g" +(112).g” =(1L1).52 ~(11,2).82 20-0=0
g g
2 =(1L).g2+(112)g” =—(11,). 52 + (11,2).81 = 0+0=0
g g

T =(12,).g" +(12,2).g” = (12,).52 - (12,2).82 = 0-0=0
g g

I3 = (120).8" + (12.2).g% = ~(12.1).82 4 (12,281 = 04 (12.2).80 - 12D _ 1 den
g g 8 8» 28, ou
I, =(22,).g" +(22,2).g" = (22,)). @-(22 2).812 _(22 D82 _g- 22D _ 1 98y

E
2 = (22,1).8"” +(22,2).6% = ~(22.) 82 4+ (22.2)B11 _ 04+ (252). g22 _a22) 28k i,
g g 8n 2g22 ou,

La curvatura total de Gauss en coordenadas geodésicas

Teorema 09: La curvatura total de Gauss en coordenadas geodésicas viene dada
por

9 E»

I
Jen o

expresada en un sistema de coordenadas geodésicas en las que las geodésicas son
las curvas u,=cte, y las trayectorias ortogonales son las curvas u;=cte.

K=-

Demostracion:
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El Teorema Egregium de Gauss, nos permite expresar la curvatura total de Gauss
en funcién de los simbolos de Christoffel de la manera siguiente

1 0 0
Kemt [5 D~ T A T+ T —Fﬁné]
11 1 2

se tiene entonces, usando el teorema 08 anterior y haciendo g;;=1 (por tratarse de
coordenadas geodésicas):

2

ko MO (1 08n) oiooa( L %82) _,
| ou, \ 285, ou, 28y oy

0 sea.
2 5 2 2
|9 1 Jg,, + 1 (9gy __ 1 9 8» 1 (0gy _ 1 (09gy _
ou, \ 2g,, ou 48222 du, 2g,, a”12 2g222 ou, 4g222 du,

2 2
__ 1 82gzz_*_ 1 (9gy __ 1 1 82g22_ 1 08, _
22y aulz 4g222 ou, VE&» | 2VExn aulz 4g,,\8n ou,
1 o 1 ag, 1 9°\gn

=\/g_zza_”1 2\/g_22 du, \/g_zz du}

Las curvas de longitud minima. Una condicién necesaria

En los primeros estudios sobre curvas geodésicas se definia a la curva geodésica
como una curva tal que la longitud de arco sobre ella entre dos puntos dados de la
misma es minimo. Sin embargo, esta definicion no resulta precisa si tenemos en
cuenta que, por ejemplo, en la superficie esférica, dos puntos dividen al circulo
maximo que los contiene en dos arcos, y solo uno es el que da la distancia minima
entre ambos puntos sobre la esfera (salvo, claro, que los dos puntos elegidos sean
extremos de un mismo diametro).

La geodésica, pues, no es equivalente a la curva de longitud minima. Para serlo
tendria que verificarse tanto la condicidon necesaria (si la longitud sobre un arco
dado entre dos de sus puntos es minima, entonces la curva que contiene a tal arco
es una geodésica), como la condicién suficiente (si la curva que contiene a dos
puntos dados es una geodésica, entonces ello es suficiente para afirmar que la
longitud del arco entre ambos puntos, medido sobre ella, es de longitud minima).

La condicion suficiente no se verifica. Sin embargo, podemos probar un teorema
por el cual si es posible afirmar que si el arco de curva entre dos puntos es de
longitud minima, entonces necesariamente la curva es una geodésica.

Condicion necesaria:

Teorema 10: Si el arco de curva contenida en una superficie es de longitud minima
entre dos puntos de la misma, entonces tal arco esta contenido en una geodésica.
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Demostracion:

UZ: const

,/,.//,////_/// Consideremos dos familias de curvas
£ ////"/,// ortogonales, u,=constante y uj=constante.
/ VAT Consideremos la curva u,=0 vy fijemos
b 4 sobre ella dos puntos A y B, que
corresponderdn, respectivamente a uj=a y
u;=b, verificandose, por consiguiente, que

\
< ><\\ i3 u>(a)=0, y ux(b)=0.

. ~ > ™ Llamemos s a la longitud del arco de curva
RN N C sobre u,=0, comprendido entre Ay B, y
¥ *U=a consideremos otra curva C’' que pase

La longitud de arco minima s también por los puntos A y B, obtenida
corresponde a una linea geodésica deSde C mediante una VariaCién
infinitesimal d¢, que hace que el arco de

de curva entre A y B medido sobre C’ tenga la longitud s+ ds, cuya ecuacion es
ux=uz(uy).

Puesto que la diferencial de Ila longitud de arco en general es
2 2 2

ds” = g, (u,,u,).du; +g,,(u,u,).du;, ya que g, =0 por ser curvas ortogonales, se

tiene:

b
Arco de curva entre Ay B, sobre C: s =f1/g”(ul,0).duI

b
Arco de curva entre Ay B, sobre C": s+ o =f\/gn(u1,u2).du12 + g, (U, 1) du;

Simplifiqguemos esta Ultima expresion:

2 b 1

b
du o\
s+ 3s =f gn(”puz)+g22(”1a”2){d_uz) du, =f(g11(”19u2)+g22(”1au2)-”22 )2.du1

a 1 a

A fin de reducirla a la curva u,=0, y teniendo en cuenta el desarrollo

0g,, (u,,u,)

u,

gll(ulau2)=gll(ulao)+6uz( ) +.., yque lim u,(u)=0
u, =0

u, —0
se tiene:

, . ., X
haciendo g,, =g,,(1,,0), y también la aproximacion \/1+xz1+5, para x —=0.

Resulta:
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b b
os f\/g_“ 1+ duz (agll(ulauz)) .dul —f\/g_“,dul =
u, =0

a 2g,, du,

a

b
=f\/g_1l 1+ 5!42 (agn(un”z)) _\/g_ll .dul =
a “2=O

2g,, du,

b ou, (90 ,
=f \/g_11+2 2 ( g1 (1, ”2)) _\/g_“ du, =
a u,=0

g1 ou,

agll(“louz)) du
1
u, =0

s (
a2\/g_11 auZ

o) ds
si sustituimos ahora du, = —¢ y du, =

8» g1

dﬁ} 1 (agn(ul,uz)) 6¢.ds=}(Kg) Sp.ds

a 2g11\/gzz ou,

a =0

b
Si s es minima, entonces & =0: oy =f(Kg) Op.ds =0, es decir: (K,), ,, =0,
a =0
lo que indica que la longitud s minima corresponde a una curva con curvatura
geodésica nula, esto es, a una linea geodésica.

En definitiva, si el arco de curva entre dos puntos es de longitud minima, entonces
la curva que lo contiene es un geodésica.

Las geodésicas como curvas autoparalelas

Sea la superficie S de ecuacién vectorial 7 = 7(u,,u,), esto es:

x=x(u,,u,)
y= J’(”nuz)
z=2z(u,u,)

y sea la curva C contenida en S cuyo vector tangente en cada punto viene dado por

_du, . du, . . _ .
=7.— 4. —— =1 + T,
ds

ds ds
donde es s la longitud de arco a lo largo de la curva C.

Consideremos un vector cualquiera v(s) perteneciente al plano tangente a la curva
en cada punto, es decir, que se pueda expresar como combinacion lineal de los
vectores 7, y 7, . O sea:

V(s) =F.,(s) + 750, (s)
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v,(s)y v,(s)son, por consiguiente, las componentes del vector con respecto a 7, y

7.

Definicién: Se llama derivada covariante del vector v(s) a lo largo de la curva C, a
la expresiones

Dvi(s) _dv, (S) Zr’hv (s)u, i=12
Ds

Definicién: Se dice que Vv(s) se transporta paralelamente a si mismo, a lo largo de
la curva C, si la derivada covariante de v(s)a lo largo de C es nula:

Dv. (S) dv, (s)
Ds

Zrlhv (s)u, =0 i=12

Definicidon: Una curva C contenida en una superficie S se dice que es autoparalela si
es su propio vector tangente el que se transporta paralelamente a si mismo a lo
largo de C.

Teorema 11: Las curvas autoparalelas de una superficie S son sus geodésicas.

Demostracion: Es inmediato, si tenemos en cuenta que el vector tangente es
{ =F.u, +7.u,, por lo que sus componentes respecto a 7, y 7 son u(s)y u,(s),
que nos indica que la derivada covariante del vector tangente viene dada por las

ecuaciones:

D_u=_ Zf’hu'uh i=12

. . Du, . .
Si la curva es autoparalela sera —-=0 i=1,2, o bien:
s

du' i ' ' .
d_sl + erhu'/uh =0 =12
J

que es la ecuacion de las geodésicas.
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ANEXO: UNAS RELACIONES B’I'\SICAS ENTRE LOS VECTORES TANGENTE,
NORMAL, LA METRICA Y LOS SIMBOLOS DE CHRISTOFFEL

Se verifican algunas relaciones que nos permiten demostrar las propiedades y
relaciones basicas de la curvatura geodésica y las ecuaciones de las lineas
contenidas en la superficie que presenten estas caracteristicas.

- . . or . Y
Al. Se verifica que (7 Ar2).N=\/—, siendo rl.=a—,z=1,2, Nes el vector
u;

unitario normal a la superficie en el punto dado, y g es el determinante de la matriz
que definen los coeficientes de la primera forma fundamental (g = g,,.2,, — €5)-

Demostracion:
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T (AR
nAa”n

(7 n7) (7 A7)

~ 7 AT
2
N> =| 12| =
7 A 7|

5 Fsene (i -cos®0) AP -[Alcos 0

GrEF _BARF o ()
g1&» _g122 g \/g
. 77| sen’0 — g2
N P N EX A R BT P g
e Je oo Ve Je Je g
[A1.1]

A.2. Se verifican las relaciones

1 —
=

donde son (ij,k), T,

b U 9

respectivamente.

Demostracion:

De la definicién de los simbolos de Christoffel:

0 sea:
rl

J

I’ =

Y
La inversa de la matriz métrica:

gn glz _ g &
gzl g22 8y &»

l (l.]al) g12
g|@.2) g,
i, j,k,m =12 los simbolos de Christoffel de 12 y 22 especie,

g, @@
821 (i7,2)

1
9 FUZ=_
g

(lj’k) F - F'I'Z =(l.j9k)'ghk
(@.0)g"" +(5.2)g™
(#.1)g " +(7.2)g™
1 _&»

; g

=l 8»n & e<g12=_&
g\~ 82 &n g

g2 - f&un
| g
por lo cual:
L. .. IRLVA!
r; = _[(Ual)gzz_(l]az)gu]:_ (] ) 8
g g (l],2) (gzz)
1 1 ij,1
I‘; = —[—(l'j,l)g12+(ij,2) 11:|=_g11 ] J
g £181 (l],2
: _oF - 3r L
A.3.Siendo v, =—,i=12, 7, = i,k =12, se cumple 7.7, = (ij,k)
u, u,0u,

Demostracion:

De las Ecuaciones de Gauss:
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Flr1 + Fzrz +1, N
(fy: coeficientes de la segunda forma fundamental)

multiplicamos escalarmente por 171 y por ;72,con lo cual se tiene que, habida cuenta
de que 171.N=0,i=1,2:

1 2
=T} ;811 +I; i 812

Qm

Flglz +F2g22
0 sea
=T}g,, = (ij.k)

A.4. Se verifica que (17; i )N (-1)" \/_ [, i,j,k,h=12 de modo que sea

.. Y k ij o
2, sii=1 " du, T Ou,du, /

los simbolos de Christoffel de 22 especie.

1, sii=2 7 2y
h={ y 9 is1n A =9 ik—12y T, i j,m=12 son

Demostracion:

Teniendo en cuenta que se verifica la igualdad vectorial
nb)end)=(ac)pd)-(bz)a.

07 ) = (07, ) E0R) (BN E)-

(7,
e Ve

)

Y
a

se tiene

Xl" /\l"z)

y siendo, por el parrafo anterior

sera
_ - 1 . ) -1 (]k,l) &i
e N = (g, (k,2)- 2., (k1) = Jg. |
(: ar) \/g(g,l(f )-g, (k1) =g k2 <.
sii=1, (rlArjk)N=\/§.lgﬂ ﬂclJ Jer?
glg, (k2
sii=2, (7 )N \/__1 (k1) & = Jeg I,
]k2) g»n
En definitiva:

(I"Al" )N ( 1) \/_ ]k’ iajakah=152

1, sii=2
2, sii=1
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A.5. Si las lineas principales de curvatura son ortogonales, esto es, si g;»=0, se
cumplen las siguientes relaciones:

- 0
Flzl - 2 1 gll
g\ U,

-1 {0
rl = S 082
g\ 9y

Demostracion:

De la definicién de los simbolos Christoffel, (z’j,k)=I‘y'.’.gkhel“;=(ij,k),g”k, se
tiene:

02 =10 + (11,2)g = (11) 5 4 11,2)80 - (112)
g g £

r = (221)g" + (22)g" = (220)2 + (221)= 52 (221
£ g &

Por otra parte, de ser:

1(0g, dg, 0g.
(ij,k) == Sk , 98w _ 8
2\ ou,  Ou;  duy

_ 0g,,
ou,
_ 08y
ou,

-1 (0
Flzl - 2 1 gll
8y \ ou,

-1 {0
r212 _ . g2
g\ 9y

(11,2) =

(22,1)=

N — N =

por tanto:

[A5.1]




