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Sobre la caracterización  
de las aplicaciones entre conjuntos 
 
 
 
 
 
 
 
 
0. Aplicaciones 
0.0. Introducción: 
Vamos a estudiar aquí, someramente, la idea de aplicación entre conjuntos y cómo 
caracterizar los diferentes tipos de aplicaciones, partiendo para ello de la idea de 
correspondencia entre conjuntos y de sus propiedades inmediatas (la composición 
de correspondencias es también una correspondencia, es asociativa, etc.). 
 
Partamos, pues, repasando la noción de correspondencia entre conjuntos para 
definir, a partir de ella la idea de aplicación. 
 
Una correspondencia f de A en B queda definida por su grafo F, que es el 
subconjunto del producto cartesiano de AXB, cuyos pares están formados por cada 
elemento x de A que tiene imagen f(x) y por la imagen f(x): 
 

F = (xi, f (xi ), (xk, f (xk ),...{ }  

F ⊆ AxB  
 
Así, pues, la correspondencia f entre dos conjuntos puede expresarse por su grafo, 
F, por el conjunto inicial A y por el conjunto final B. La podemos representar por  
 

f = F;A,B( )  

 
y si llamamos pr1F al conjunto de las primeras componentes de los pares que son 
elementos del grafo, y pr2F  a las segundas componentes, se tiene que 
 

pr1F ⊆ A, pr2F ⊆ B  
	
  
Una	
   correspondencia	
   se	
   dice	
   unívoca	
   si	
   ningún	
   elemento	
  de	
  A	
   tiene	
  más	
  de	
  una	
  
imagen	
  en	
  B:	
  

f = F;A,B( ) unívoca	
  ↔∀x ∈ pr1F, (x, y) = (x, y ')→ y = y ' 	
  
 
 
0.1. Aplicación: 
La correspondencia se dirá que es una aplicación de A en B si es unívoca y si 
A = pr1F  (a elementos del conjunto inicial A le corresponde uno y solo un elemento 
del conjunto final B, y todos los elementos del conjunto inicial A constituyen la 
primera componente del grafo F: todos tienen imagen en B). 
 
En definitiva, si f = F;A,B( )  es aplicación cumple: 

-­‐ Es unívoca 
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-­‐ pr1F = A  
 
0.2. Prolongación de aplicaciones: 
Sigue el mismo criterio que la prolongación de correspondencias: 
Sean las aplicaciones f = F;A,B( ), g = G;C,D( )  tales que F ⊆G . Se tiene que 

A = pr1F ⊆ pr1G =C  y g coincide con f en A. 
Si  además B ⊆ D , entonces diremos que g es una prolongación de f en C, o bien, 
que f es una restricción de g al subconjunto A. Representaremos esto por f = g / A . 
 
 
0.3. Composición: 
La composición de aplicaciones sigue, obviamente, el mismo criterio que la 
composición de correspondencias. Veamos que la composición de dos aplicaciones 
es también una aplicación: 
 
Sean las aplicaciones f = F;A,B( )  y g = G;B,C( ) . Veamos que la correspondencia 

g  f = G F;A,C( )  es una aplicación: 

- g  f  es unívoca, ya que ∀(x, y), (x, y ')∈G F→ y = y ' : 
(x, y)∈G F→∃z ∈ B / (x, z)∈ F∧(z, y)∈G  
(x, y ')∈G F→∃z '∈ B / (x, z ')∈ F∧(z ', y)∈G  

Por ser f  unívoca: (x, z) = (x, z ')→ z = z '  
Por ser g  unívoca: (z, y) = (z, y ')→ y = y '  

Luego ∀(x, y), (x, y ')∈G F→ y = y '  . g  f = G F;A,C( )  es unívoca. 

-­‐	
   A = pr1(G F) ,	
  pues	
   pr1(G F) = f
−1 pr1(G)[ ] = f −1(B) = A . 

 
La composición de aplicaciones, al tratarse de una composición de corresponden-
cias, tiene la propiedad asociativa: 
 

f = F;A,B( ), g = G;B,C( ), h = H;B,C( )→ h  (g  f ) = (h  g) f  

 
 
0.4. Aplicaciones suprayectivas: 
La	
  aplicación f = F;A,B( ) es	
  suprayectiva	
  si	
  todo	
  elemento	
  de	
  B	
  es	
  imagen	
  de	
  uno	
  o	
  
más	
  elementos	
  de	
  A:	
  
	
  

f 	
  suprayectiva	
  ↔∀y ∈ B,∃x ∈ A / f (x) = y 	
  
	
  
Teorema	
  04.1:	
  Si	
  dos	
  aplicaciones	
   f = F;A,B( )  y g = G;B,C( ) 	
  son	
  suprayectivas,	
  su	
  
composición	
   g  f = G F;A,C( ) 	
  también	
  lo	
  es.	
  
Demostración:	
  
g = G;B,C( )  suprayectiva→ imag(g) = g(B) =C 	
  
f = F;A,B( )  suprayectiva→ imag( f ) = f (A) = B  

por tanto:  
imag(g  f ) = (g  f )(A) = g f (A)[ ] = g(B) =C→ (g  f )(A) =C → g  f 	
  suprayectiva 
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0.5. Aplicaciones inyectivas: 
La aplicación f = F;A,B( )  

es inyectiva si ningún elemento de B es imagen de más 

de un elemento de A: 
 

f inyectiva↔ x, y( ) = x ', y( )∈ F→ x = x ', ∀y ∈ B  

 
Teorema 05.1: Si dos aplicaciones f = F;A,B( )  y g = G;B,C( )  son inyectivas, su 

composición g  f = G F;A,C( )  también lo es. 

Demostración: 
(x, y)∈G F→∃z ∈ B / (x, z)∈ F∧(z, y)∈G  
(x ', y)∈G F→∃z '∈ B / (x ', z ')∈ F∧(z ', y)∈G  

 
Por ser g  inyectiva: (z, y) = (z ', y)→ z = z '  
Por ser f  inyectiva: (x, z) = (x ', z)→ x = x '  

O sea:  
            x, y( ) = x ', y( )∈G F→ x = x ', ∀y ∈C→ g  f  inyectiva 

 
 
0.6. Aplicaciones biyectivas: 
Una aplicación f = F;A,B( )  es biyectiva si es suprayectiva e inyectiva: 

 

f biyectiva↔
∀y ∈ B,∃x ∈ A / f (x) = y
x, y( ) = x ', y( )∈ F→ x = x ', ∀y ∈ B

&
'
(

)(
 

 
Teorema 06.1: Si dos aplicaciones f = F;A,B( )  y g = G;B,C( )  son biyectivas, su 

composición g  f = G F;A,C( )  también lo es. 

Demostración: 
Por los dos teoremas anteriores, para aplicaciones suprayectivas e inyectivas, se 
verifica el teorema también para aplicaciones biyectivas, ya que estas aplicaciones 
son, por definición suprayectivas e inyectivas. 
 
 
0.7. Otras propiedades: 
Teorema07.1:  
Sean las aplicaciones f = F;A,B( )  y g = G;B,C( ) . Si g  f = G F;A,C( ) es 

inyectiva, entonces también f  lo es. 
Demostración: 
Si f  no fuera inyectiva→∃x, x '∈ A,∃y ∈ B / x ≠ x '∧(x, y)∈ F∧(x ', y)∈ F  
Y como g  es aplicación→∃z ∈C / (y, z)∈G  

por lo que x ', z( )∈G F∧ x ', z( )∈G F∧ x ≠ x '→ g  f no sería inyectiva 

 
Teorema 07.2: 
Sean las aplicaciones f = F;A,B( )  y g = G;B,C( ) . Si g  f = G F;A,C( ) es 

suprayectiva, entonces g 	
  también lo es. 
Demostración: 
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Si g  no fuera suprayectiva→ imag(g) = g(B) ≠C  

Luego, imag(g  f ) = (g  f )(A) = g f (A)[ ] ≠C→ g  f no sería suprayectiva 

(y esta situación ocurriría siempre, aún cuando fuera f (A) = B ) 
 
Teorema 07.3: 
Toda aplicación f = F;A,B( )  

induce en A  una partición o clasificación, y por tanto 

define en A  una relación de equivalencia. 
Demostración: 
Basta definir en A una relación R por la condición: ∀x, y ∈ A, xRy↔ f (x) = f (y)  
R es reflexiva: ∀x ∈ A, xRx↔ f (x) = f (x)  
R es simétrica: ∀x, y ∈ A, xRy→ f (x) = f (y)→ f (y) = f (x)→ yRx  

R es transitiva: ∀x, y, z ∈ A, xRy→
xRy→ f (x) = f (y)
yRz→ f (y) = f (z)

$
%
&

'&
→ f (x) = f (z)→ xRz  

Llamaremos A R  al conjunto cociente de A por esta relación de equivalencia. 
 
Teorema 07.4: 
Dada una aplicación cualquiera f = F;A,B( ) , existen dos aplicaciones iA = IA;A,A( )  
y iB = IB;B,B( )  tales que f  iA = f  y iB  f = f . 

Demostración: 
Es obvio, pues los grafos son IA = (x, x) / x ∈ A{ }, IB = (y, y) / y ∈ B{ } , es decir:  

∀x ∈ A, iA (x) = x, ∀y ∈ B, iB (y) = y  
 
 
En la parte que sigue vamos a obtener alguna condición necesaria y suficiente para 
que una aplicación sea inyectiva, suprayectiva o biyectiva. Es lo que podemos 
llamar teoremas de caracterización de las aplicaciones. 
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1. Teoremas de caracterización 
1.0. Un teorema de existencia: 
Dadas las aplicaciones f = F;A,B( ) 	
  y h = H;A,C( ) , se cumple que son equivalentes 

las afirmaciones siguientes: 
a) Existe una aplicación g = G;B,C( ) 	
  tal que h = g  f . 

b) ∀x, x '∈ A, f (x) = f (x ')→ h(x) = h(x ')  
Demostración: 
Veamos que a)	
  → b):    
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Si	
   f (x) = f (x ')∧∃g = G;B,C( ) / h = g  f → 	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  → h(x) = (g  f )(x) = g f (x)[ ] = g f (x ')[ ] = (g  f )(x ') = h(x ')  
Veamos que b) → a): 
Estudiemos primero el caso de que f (A) = B  y después veremos el caso general de 
que f (A)⊆ B . 

-­‐ Si f (A) = B , podemos definir G = (y, z) / (∃x) (x, y)∈ F∧(y, z)∈ H( ){ } , y 

probemos que g = G;B,C( )  es aplicación, esto es que 

∀y ∈ B,∃z ∈C / g(y) = z∧ z único. 
Basta que ∀y ∈ B  elijamos x ∈ A / (x, y)∈ F , y sea z = h(x) , o sea tal que 
(x, z)∈ H , lo que implica que ∀y ∈ B,∃z ∈C / (y, z)∈G . 

          Además, z  es único, pues si existiera otro z '∈C  tal que (y, z ')∈G  se  
          tendría que habría un x '∈ A / f (x) = y = f (x ')∧ z = h(x), z ' = h(x ') , pero por la 
          hipótesis de que ∀x, x '∈ A, f (x) = f (x ')→ h(x) = h(x ')  se tiene que z = z ' .  
          Finalmente, como por construcción es G F = H  se tiene que g  f = h . 

-­‐ Veamos ahora el caso general: f (A)⊆ B . 

         Se tendrá que f (A) = B '⊆ B . Si consideramos la aplicación f ' = F ';A,B '( )  tal 

         que ∀a ∈ A, f '(a) = f (a)  y  sustituimos	
  A, B, C, f, h	
  	
  por	
  A,	
  B’,	
  C,	
  f’,	
  h	
  	
  estamos	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  en la hipótesis del apartado anterior, con f '(A) = B ' :	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ∃g ' = G ';B ',C( ) / g ' f ' = h ,  por lo  que,  si  prolongamos g '  en  la  aplicación  

        g = G;B,C( ) , se tiene que ∀a ∈ A, h(a) = g ' f '(a)[ ] = g ' f (a)[ ]  y h = g  f . 

          
 
1.1. Teorema de caracterización de aplicaciones inyectivas: 
Dada la aplicación f = F;A,B( ) ,	
  son	
  equivalentes	
  las	
  condiciones	
  siguientes:	
  
a)	
   f 	
  es	
  inyectiva.	
  
b)	
  Existe	
  una	
  aplicación	
   g = G;B,A( ) 	
  tal	
  que	
   g  f = iA .	
  
Demostración: 
Si f es inyectiva, entonces f (x) = f (x ')→ x = x ' = iA (x) = iA (x ') , por lo que conside-
rando que si hacemos A=C y h = iA  en el teorema de existencia anterior, las 

aplicaciones f = F;A,B( ), iA = IA;A,A( ) , se tiene que en virtud de dicho teorema, es 

condición necesaria y suficiente para que exista una aplicación 
g = G;B,A( ) / g  f = iA . 
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1.2. Teorema de caracterización de aplicaciones suprayectivas: 
Dada la aplicación f = F;A,B( ) , son equivalentes las condiciones siguientes: 

a) f  es suprayectiva. 

b) Existe una aplicación h = H;B,A( )  tal que f h = iB . 

Demostración: 
-Veamos que b) → a): 
∀b∈ B, ( f h)(b) = f (h(b)) = iB (b) = b→  ∃a ∈ A / a = h(b)→ f (h(b)) = f (a) = b  
o sea: 
∀b∈ B,∃a ∈ A / (a,b)∈ F→ f suprayectiva 
-Veamos que a) →b): 
∀b∈ B ,  sea Fb = a ∈ A / (a,b)∈ F{ }  el conjunto de elementos de A que tienen por 

imagen a b . Como f es suprayectiva, tal conjunto es no vacío. 
Por el axioma de elección, podemos elegir un elemento de Fb , que representamos 

por h(b)  de forma que queda definida una aplicación h = H;B,A( )  con H = (b,h(b))  
y es tal que f (h(b)) = b = iB (b), ∀b∈ B . 
 
 
 
1.3. Teorema de caracterización de aplicaciones biyectivas: 
Dada la aplicación f = F;A,B( ) ,	
  son	
  equivalentes	
  las	
  condiciones	
  siguientes:	
  
a)	
   f 	
  es	
  biyectiva.	
  
b)	
  Existe	
  dos	
  aplicaciones	
   g = G;B,A( ) 	
  y	
  h = H;B,A( ) 	
  tales	
  que	
   g  f = iA 	
  y	
   f h = iB .	
  
Demostración: 
Que a) es equivalente a b) es inmediato, desde los anteriores teorema 1.1 y 1.2. 
Sin embargo, interesa comprobar que es única la función g  y que también es única 
la función h , y además, que g = h . 
Por la asociatividad de la composición de aplicaciones, es (g  f )h = g  ( f h) ,	
  	
  y	
  
siendo	
   g  f = iA, f h = iB ,	
  se	
  tiene:	
   (g  f )h = g  ( f h)→ iA h = g  iB → h = g . 
Esta igualdad permite definir, para las aplicaciones biyectivas, la idea de aplicación 
inversa o recíproca. 
 
 
 
1.4. Aplicación recíproca: 
La aplicación g = h 	
  se	
  	
  del	
  teorema	
  anterior	
  se	
  denomina	
  aplicación	
  recíproca	
  o	
  
inversa	
  de	
  f	
  y	
  se	
  designa	
  por	
   f −1 . 
Teorema 14.1: Sean las aplicaciones biyectivas f = F;A,B( ) 	
  y	
   g = G;B,C( ) .	
  Se	
  
verifica	
  que	
  
a)	
   g  f( )−1 = f −1  g−1 	
  

b)	
   f −1( )
−1
= f 	
  

Demostración:	
  
a) Por	
  la	
  propiedad	
  asociativa	
  de	
  la	
  composición	
  de	
  aplicaciones	
  y	
  la	
  definición	
  

de	
  aplicación	
  recíproca:	
  
f −1  g−1( ) g  f( ) = f −1  g−1  g( ) f = f −1  iB  f = f −1  f = iA 	
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  luego:	
  
f −1  g−1 = g  f( )−1 	
  

b) Se tiene que 

f −1  f = iA ∧ f  f −1 = iB → f = f −1( )
−1

 

 
 
 
 
 
 
 
 
 
2. Factorización canónica de una aplicación 

Sea A un conjunto dotado de una relación de equivalencia R. Si es A/R el 
conjunto cociente de A por dicha relación de equivalencia, se llama aplicación 
canónica a la aplicación definida por n = N;A,A R( ) , esto es, a la aplicación 

que le hace corresponder a cada elemento a  del conjunto A la clase de 
equivalencia a[ ]  a la que pertenece 

∀a ∈ A, n(a) = a[ ]∈ A R  

Como es obvio que para todo elemento de A existe una clase de equivalencia a 
la que pertenece, la aplicación canónica así definida es suprayectiva. 
 
Por el teorema 07.3 siempre es posible definir una relación de equivalencia R 
en el conjunto A, asociada a cualquier aplicación f = F;A,B( ) . 

 
Teorema 21.1: Sea la aplicación f = F;A,B( )  y sea R la relación de 

equivalencia asociada a f, es decir, definida por xRy↔ f (x) = f (y) . 
Sea también la aplicación canónica n = N;A,A R( )  correspondiente a dicha 

relación de equivalencia. 
Se verifica que: 
a) φ = G;A R, f (A)( )  con G = ( x[ ], f (x)) / x ∈ A{ }  es una aplicación biyectiva. 

b) i = I; f (A),B( )  con I = ( f (x), f (x)) / x ∈ A{ }  es una aplicación inyectiva. 

c) f = i φ n  
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Demostración: 
a) φ = G;A R, f (A)( )  es aplicación biyectiva, pues 

     Es unívoca: ∀ x[ ], y[ ]∈ A R / x[ ] = y[ ]→ xRy→ f (x) = f (y) ,  
        o sea, si x[ ] = y[ ]→φ x[ ]( ) =φ y[ ]( )  

 Es inyectiva: ∀f (x), f (y)∈ f (A) / f (x) = f (y)→ xRy→ x[ ] = y[ ] , 
                 O sea, si φ x[ ]( ) =φ y[ ]( )→ x[ ] = y[ ]  

    Es suprayectiva: ∀f (x)∈ f (A), ∃x ∈ A / x[ ]∈ A R∧φ x[ ]( ) = f (x)  
b) i = I; f (A),B( )  es aplicación inyectiva, pues 

           trivialmente, ∀f (x)∈ f (A), i f (x)[ ] = f (x)⊆ B . 

c) ∀x ∈ A, (i φ n)(x) = (i φ) n(x)[ ] = (i φ) x[ ] = i φ x[ ]#$ %&= i f (x)[ ] = f (x)  
 
 
Notas: 
- Si f fuera homomorfismo, A R ≡ ker f . 
- Si f fuera suprayectiva, entonces f (A) = B , y la factorización canónica se 
simplifica: 
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