CUERPOS. EXTENSIONES DE UN CUERPO

1.1.	Cuerpos .	1	
1.2.	Subcuerpos.	4	
1.3.	Característica de un cuerpo. Subcuerpo primo.		6
1.4.	Cuerpos finitos.	9	
1.5.	Extensiones de un cuerpo.	14	
1.6.	Extensiones trascendentes y extensiones algebraica	is.	16
1.7.	Nota Bibliográfica.	19	

1.1. CUERPOS:

Vemos en este primer apartado la definición de cuerpo o campo, junto con algunas condiciones básicas de caracterización y de propiedades de homomorfismo.

Def. 1.1:

Se llama, por definición, *cuerpo*, a todo anillo (K,+,.), con elemento unidad $e^{-1}(0)$ tal que " $a\hat{I}K-\{0\}$, $a^{-1}\hat{I}K$ / $a.a^{-1}=a^{-1}.a=e$.

Def. 1.2:

La ley "+" se llama ley aditiva del cuerpo y la ley "." se llama ley multiplicativa.

Prop. 1.1:

Para que un anillo (K, +, .) sea un cuerpo es condición necesaria y suficiente que K- $\{0\}$ sea un *grupo multiplicativo*.

En efecto:

 $\dot{\boldsymbol{U}}$ Si K'=K-{0} es grupo multiplicativo \boldsymbol{P} "a $\hat{\boldsymbol{I}}$ K', $\boldsymbol{S}\!a^{-1}\hat{\boldsymbol{I}}$ K' /a. $a^{-1}=a^{-1}.a=e$ \boldsymbol{P} K es cuerpo (por Def. 1.1).

 ${m P}$ Si K es cuerpo ${m P}$ "a ${m \hat I}$ K', ${\bf S}a^{-1}{m \hat I}$ K' /a. $a^{-1}=a^{-1}.a=e$ ${m P}$ "." Es ley interna, asociativa, con elemento neutro (el elemento e) y simetrizada ${m P}$ $K'=K-\{0\}$ es grupo multiplicativo.

Prop. 1.2:

- 1°) En un cuerpo cualquiera K se cumple que "(a, b) \widehat{I} K'xK, las ecuaciones a.x = b y y.a = b tienen, cada una, una y solo una solución, dada por $x = b^{-1}.a$, $y = b.a^{-1}.$
- 2°) Dado un anillo cualquiera K tal que $K^{1}\{0\}$ y tal que I'(a, b) I K'xK cada una de las ecuaciones a.x = b, y.a = b tenga al menos una solución, entonces K es un cuerpo.

En efecto:

1°)
$$a.x = b P a^{-1}.a.x = a^{-1}.b P (a^{-1}.a).x = a^{-1}.b P e.x = a^{-1}.b P x = a^{-1}.b$$
.

y.a = b
$$\mathbf{P}$$
 y.a a^{-1} = b.a \mathbf{P} y. $(a.a^{-1})$ =b. a^{-1} \mathbf{P} y.e = b.a \mathbf{P} y = b. a^{-1} .

si x', y' fueran también soluciones respectivas de a.x = b y de y.a = b, se tendrá: $x' = a^{-1}.b$, $x = a^{-1}.b$, por lo que es x' = x y la ecuación a.x = b tiene solución única.

y' = b. a^1 , $y = b \cdot a^{-1}$, por lo que es y' = y y la ecuación $y \cdot a = b$ tiene solución única.

2°) Sea $a\widehat{I}$ $K' = K - \{0\}$, entonces existe un e que es solución de la ecuación a.x = a y existe también un e' que es solución de la ecuación y.a = a. Esto es, cumplen que a.e=a y e'.a=a.

Además, es e = e', elemento unidad de K:

$$\forall r \in K, \exists m \in K / m.a = r \\ \Rightarrow \begin{cases} m.(a.e) = r \Rightarrow (m.a).e = r \Rightarrow r.e = r \\ \Rightarrow \\ \forall r' \in K, \exists m' \in K / a, m' = r' \end{cases} \Rightarrow (e'a).m' = r' \Rightarrow e'(.a.m') = r' \Rightarrow e'.r' = r'$$

 \Rightarrow e es, por tanto, elemento unidad a la derecha, y e' es elemento unidad a la izquierda, por lo que e.e'=e'.e=e=e'.

En cuanto al elemento simétrico, veamos:

$$\forall r \in K, \exists m \in K / m.a = r \\ \Rightarrow \begin{cases} \exists a' \in K / a'.a = e \\ \Rightarrow \exists a', a'' \in K / a'.a = a.a'' = e \Rightarrow \end{cases}$$

$$\forall r' \in K, \exists m' \in K / a.m' = r'$$

$$\exists a'' \in K / a.a'' = e \end{cases}$$

$$\Rightarrow a'.(a.a'') = a'e \Rightarrow (a'.a).a'' = a' \Rightarrow e.a'' = a' \Rightarrow a'' = a' \Rightarrow \forall a \in K - \{0\},$$

$$\exists a^{-1} \in K / a.a^{-1} = a^{-1}.a = e \end{cases}$$

Por consiguiente, K es grupo multiplicativo \mathbf{P} K es cuerpo.

Prop. 1.3:

Todo anillo íntegro, y en particular todo dominio de integridad con un número finito de elementos, es un cuerpo.

En efecto:

De *Teoría de Grupos*, $A'=A-\{0\}$ es un conjunto finito tal que "." es ley interna, asociativa, con elemento neutro y simplificativa \Rightarrow (A, .) es un grupo multiplicativo \Rightarrow (A, +, .) es cuerpo finito, por *Prop. 1.1*.

Prop. 1.4:

Para todo dominio de integridad D, existe un cuerpo K y un homomorfismo inyectivo

f: D ® K.

En efecto:

De Teoría de Anillos, K sería el cuerpo de fracciones del dominio de integridad D.

Prop. 1.5:

Sea K un cuerpo y A un anillo $(A \ ^1 \{0\})$. Si $f: K \ @ A$ es un homomorfismo inyectivo, entonces $f(K) \ \acute{I} A$ es un cuerpo isomorfo a K.

En efecto:

K cuerpo $\Rightarrow K$ anillo $\Rightarrow K$ anillo $^{\wedge}$ f homomorfismo de anillos $\Rightarrow f(K)$ es subanillo de A.

Además:

a) (f(K), .) tiene elemento unidad:

Sea e el elemento unidad de $(K, +, .) \Rightarrow "x \hat{I}K$, f(x) = f(x.e) = f(e.x) = f(x).f(e) = f(e).f(x) P(e) es elemento unidad de f(K)

b) La ley multiplicativa de f(K) está simetrizada:

$$f(e) = f(x.x^{-1}) = f(x^{-1}.x)$$
 P $f(e) = f(x).f(x^{-1}) = f(x^{-1}).f(x)$ **P** $f(x^{-1})$ es el inverso de $f(x)$ **P** $f(x^{-1}) = [f(x)]^{-1}$.

Luego, (f(K), +, .) es un grupo multiplicativo, y, por *Prop. 1.1.*, es un cuerpo que, por construcción, es isomorfo a K.

1.2. SUBCUERPOS:

Caracterizamos en esta página el concepto de subcuerpo de un cuerpo dado. Pretendemos establecer que el conjunto de los subcuerpos de un cuerpo K es una familia de Moore y retículo completo.

Def. 1.4:

Un subconjunto H de un cuerpo (K, +, .) se dice que es un subcuerpo de K si (H, +, .) es un cuerpo. Si (H, +, .) es un subcuerpo de (K, +, .) se dirá que K es un supercuerpo de (H, +, .).

El conjunto $B = \{z\hat{\mathbf{I}}K / x.z.x^{-1} = z, "x\hat{\mathbf{I}}K - \{0\}\}, \text{ se llama centro del cuerpo } K.$

Prop. 1.6:

La condición necesaria y suficiente para que $H\tilde{I}K$ sea un subcuerpo de (K, +, .) es que:

$$\forall x, y \in H, y \neq 0 \quad (x - y) \in H, x.y^{-1} \in H$$

En efecto:

$$HIK$$
 subcuerpo de $K\widehat{U}(H - \{0\})$ grupo aditivo y multiplicativo $\widehat{U}(\forall x, y \in H, y \neq 0 (x - y) \in H, x.y^{-1} \in H)$

Prop. 1.7:

El centro de un cuerpo K es un subcuerpo de K.

En efecto:

$$\forall z_{1}, z_{2} \in Bx(B - \{0\}), \forall x \in K - \{0\}, \begin{cases} x.(z_{1} - z_{2}).x^{-1} = x.z_{1}.x^{-1} - x.z_{2}.x^{-1} = z_{1} - z_{2} \\ x.z_{1}.z_{2}^{-1}.x^{-1} = x.z_{1}.x^{-1}.x.z_{2}^{-1}.x^{-1} = z_{1}.z_{2}^{-1} \end{cases} \Rightarrow \begin{cases} z_{1} - z_{2}^{-1} \in B \\ z_{1}.z_{2}^{-1} \in B \end{cases} \Rightarrow (B, +...) \text{ es, por Prop. 1.6, un subcuerpo de } K.$$

Prop. 1.8:

La familia F_k de todos los subcuerpos de un cuerpo K es una familia de Moore y un retículo completo.

En efecto:

- 1°) Se sabe, de Teoría de Conjuntos, que una familia de partes de un conjunto A es una *Familia de Moore* si es cerrada para la intersección y si A es elemento de la familia. En el caso de la familia F_k de los subcuerpos de K:
 - $K \hat{I} F_{k_i}$ pues K es subcuerpo de K.
 - $\{H_i\}$ \hat{I} K, colección de subcuerpos de K P C $\{H_i: i \hat{I} \mid \} = \{x\hat{I} \mid H_i \mid T \mid \}$ $\hat{I} \mid \}$ $\hat{I} \mid \{x\hat{I} \mid \}$ $\hat{I} \mid \{x\hat$
- $2^o\!)$ Considerando (F_k, \subseteq), toda subfamilia $\{S_i\}_{i\in I}$ de F_k tiene ínfimo y tiene supremo:

$$\inf\{ S_i \}_{i \in I} = \bigcap \{ S_i \}_{i \in I}$$

$$\sup\{S_i\}_{i\in I} = \bigcap\{H/H \in F_k \land S_i \subseteq H, \forall i \in I\}$$

Luego, (F_k, \subseteq) es un retículo completo.

- NOTA 1.: En realidad, toda familia de Moore es un retículo completo.
- NOTA 2.: A toda familia de Moore, de partes definidas de K, le corresponde una clausura de Moore, que se define como una aplicación desde el conjunto de partes de K en el conjunto de partes definidas de K (F_k) de modo que a cada parte X de K le corresponde la mínima parte definida X' que contiene a X. En el caso de la familia de Moore de los subcuerpos, F_{k_k} se tiene:

$$X \subseteq K \to X' = \bigcap \{ H \in F_k / X \subseteq H \}$$

1.3. CARACTERÍSTICA DE UN CUERPO. SUBCUERPO PRIMO:

Se trata aquí de precisar el concepto de característica de un cuerpo y el de subcuerpo primo. Es importante tener en cuenta que solo los cuerpos finitos tienen característica no nula, y, como veremos más adelante, esto tiene gran importancia a la hora de resolver la ecuación x^N - x = 0, pues la característica del cuerpo de las raíces está relacionada con el grado de esta ecuación.

Def. 1.5:

Se llama característica de x \hat{I} K-{0}, car x, al mínimo entero positivo p tal que p.x = 0. Será el elemento x de característica nula si solamente es p.x = 0 cuando p = 0.

Prop. 1.9:

- 1°) Todos los elementos de un cuerpo K tienen la misma característica, que representará, por tanto, un invariante del cuerpo. Se llama *característica del cuerpo* y se puede simbolizar por *car K*.
 - 2°) La característica de un cuerpo es cero, o bien, es un número primo.
 - 3°) " $x\hat{I}K$ -{0} se tiene:
 - Si car K = 0, entonces el subrupo aditivo engendrado por x es monógeno infinito.
 - Si car K = p, entonces el subrupo aditivo engendrado por x es finito de orden p.

En efecto:

1°) La misma característica:

$$\begin{aligned} & \operatorname{carx} = p_x \\ & \operatorname{cary} = p_y \end{aligned} \Longrightarrow \begin{cases} p_x . x = 0 \\ p_y . y = 0 \end{cases} \Longrightarrow \begin{cases} (p_x . x) . y = 0 \\ (p_y . y) . x = 0 \end{cases} \Longrightarrow \begin{cases} p_x . y = 0 \\ p_y . x = 0 \end{cases} \Longrightarrow p_x = p_y \end{aligned}$$

$$\text{O sea, "x} \widehat{\mathbf{I}} K - \{0\}, \text{ car } x = \text{constante} = \text{car } K.$$

2°) La característica puede ser nula (si p.x = 0 $\mathbf{P}p = 0$), pues siempre es 0.x = 0.

La característica no puede ser 1 o -1, pues siempre es $1.x = x^{-1}0$ ó $(-1).x = -x^{-1}0$.

La característica es, por tanto, 0 o bien un número p \hat{I} Z - $\{-1, 0, 1\}$ donde p puede ser un número primo o un número compuesto.

Si p es compuesto, o sea si p = c.h $(c, h \hat{I} Z - \{-1, 0, 1\})$, se tendría:

$$\begin{array}{l} p=c.h\\ p.e=0 \end{array} \Rightarrow (c.h).e=(c.e).(h.e)=0 \Rightarrow \begin{cases} c.e=0\\ h.e=0 \end{cases} \Rightarrow$$

 $\Rightarrow p$ no sería característica de $\it K$. Por tanto, $\it p$ no puede ser compuesto, sino primo.

3°) Si car K=0, entonces $G_X=\{mx\ /\ m\widehat{I}Z\}$ es un grupo monógeno infinito engendrado por

x. Y si $car\ K = p$, entonces $G_x = \{0, x, 2x, ..., (p-1)x\}$ es un grupo monógeno infinito engendrado por p.

NOTA 3: De lo anterior se sabe que $(G_x, +)$, grupo monógeno aditivo engendrado por x, es finito o infinito, según que la característica del cuerpo sea nula o no nula, respectivamente. $(G_x, +)$ es un subgrupo de (K. +), pero $(G_x, +, .)$ no es, en general, subgrupo de (K, +, .), pues, por ejemplo, si es $G_x = \{0, x, 2x, ..., (p-1)x\}$ se tiene que " $r,s\widehat{I}[1, (p-1)]$ C_x N, $rx.sx=rs.x^2$ C_x I C_x D, pues C_x 1 C_x D engendran subgrupos de C_x D engendran subgrupos aditivos de C_x D engendran subcuerpos de C_x D engendran subcuerpos

Def. 1.6:

El subcuerpo del cuerpo (K, +, .) engendrado por el elemento unidad, e, recibe el nombre de *subcuerpo primo* de K. Se representará en adelante por la expresión (Π_k , +, .).

El subcuerpo primo es así, por construcción, el mínimo subcuerpo de K, contenido en cualquier otro subcuerpo de K. Esto quiere decir que los dementos mínimo y máximo del retículo completo de los subcuerpos de K (familia F_k) son:

$$Min (F_k) = P_k$$

 $Max (F_k) = K$

La proposición siguiente establece la expresión del subcuerpo primo.

Prop. 1.10:

El subcuerpo primo de K, P_k es siempre cuerpo conmutativo y su expresión viene dada por:

a) Si car
$$K = 0$$
, $P_k = \{ (me)(ne)^{-1} / m, n \hat{I} Zx(Z - \{0\}) \}$

b) Si car
$$K = p^{-1}0$$
, $P_k = \{0, e, 2e, ..., (p-1).e\}$

En efecto:

La conmutatividad del subcuerpo primo es inmediata, pues (re).(se) = r.se = s.re = se).(re), "r,s \hat{I} Z^2 , y se basa en la conmutatividad del anillo de los números enteros.

- a) Si car K = 0, $L_k = \{(me)(ne)^{-1}/m, n \hat{I} Zx(Z \{0\})\}$ cumple que $L_k \hat{I} P_k$, y, además, L_k es cerrado para la multiplicación, que es asociativa, distributiva respecto a la adición y simetrizada, luego L_k es cuerpo $P L_k = P_k$
- b) Si car K = p, $L_k = \{0, e, 2e, ..., (p-1).e\}$ cumple que $L_k \mathbf{I} \mathbf{P}_k$ y tiene las propiedades de ser cerrado para la multiplicación, la cual es asociativa, distribuye a la suma y es simetrizada, luego L_k es un cuerpo $\mathbf{P} L_k = \mathbf{P}_k$.
- NOTA 4: El subcuerpo primo P_k está incluido en el centro B de K, pues se tiene que " $x\hat{I}K$, x.(ne) = (ne).x, y también $(ne)^{-1}.x = x.(ne)^{-1}$.
- NOTA 5: El subcuerpo primo P_k de un cuerpo K de característica p, $P_k = \{0, e, 2e, ..., (p-1).e\}$ es isomorfo al conjunto Z/pz, que es también un cuerpo. Así, pues, se tiene que es:

 $P_k @ Z/pz$, si P_k es finito.

1.4. **CUERPOS FINITOS:**

En este apartado estudiamos someramente los campos de Galois hasta lograr establecer que todo campo de Galois, K, es el cuerpo de descomposición del polinomio $p(x) = x^{N} - x$ donde $N = p^r$ es el orden del campo (p es la característica y r es la dimensión del espacio vectorial (K, +.., Pk), y, asimismo, que para toda potencia $N = p^r$, con p primo y r natural, existe un campo de Galois que descompone al polinomio $p(x) = x^{N} - x$. Establecemos, también, que todo campo de Galois es perfecto, esto es, que todo polinomio irreducible de K[x] es separable (no tiene raíces múltiples).

Def. 1.7:

Un cuerpo con un número finito de elementos se llama cuerpo finito, o bien, campo de Galois. El orden de un campo de Galois, O(K), es el cardinal del cuerpo.

Prop. 1.10:

La característica de un campo de Galois es un número primo.

En efecto:

Si car K = 0 \Rightarrow $\Pi_k = \{(me).(ne)^{-1} / m, n \in Z \times (Z - \{0\})\}$ es infinito $\wedge \Pi_k \subseteq K$ \Rightarrow K es infinito \Rightarrow K no es campo de Galois . Por tanto:

K campo de Galois \mathbf{P} car K 1 0 \mathbf{P} car K = \mathbf{p} $\hat{\mathbf{U}}$ \mathbf{p} primo

Prop. 1.11:

El orden de un campo de Galois es una potencia de su característica. O sea:

K campo de Galois $\mathbf{P} \Re \hat{\mathbf{I}} N / O(K) = (car K)^r$

En efecto:

Sea el espacio vectorial $(K, +, ., P_k)$, donde el cuerpo finito K es el grupo abeliano de los vectores del espacio y donde el cuerpo primo de K, P_k , es el cuerpo de los escalares. Sea r la dimensión de este espacio vectorial y sea $\{v_1, v_2, ..., v_r\}$ una base. En estas condiciones, se tiene:

"
$$v\hat{I}$$
 K, $V = a_1.V_1$, + $a_2.V_2$, + ... + $a_3.V_r$, $a_i\hat{I}P_k$

esto quiere decir que el número total de vectores del espacio (o cardinal de K) coincide con todas las maneras de tomar los p elementos ai del cuerpo \mathbf{P}_k en subconjuntos de r elementos. Son, pues las variaciones con repetición O(K) = RVp, $r = p^f \quad \mathbf{P} O(K) = (car K)^r$.

Prop. 1.12:

Sea K un campo de Galois de $N=p^r$ elementos (p primo). Entonces, K es, salvo isomorfismo, el cuerpo de descomposición del polinomio x^N-x . Además, K es isomorfo a todo campo de Galois con el mismo número de elementos.

En efecto:

Sabemos que el cuerpo de descomposición del polinomio p(x) es el cuerpo cuyos elementos son las raíces de la ecuación p(x) = 0. En este caso es $p(x) = x^{N} - x$.

Sea $K' = K - \{0\}$. Si es O(K) = N P O(K') = N - 1.

"a $\hat{\mathbf{I}}$ K', el orden del subgrupo cíclico (a) divide a N - 1 \Rightarrow a $^{N-1}$ = e \mathbf{P} a N = a \mathbf{P} a N - a = 0. También es 0 N - 0 = 0.

Entonces, "a $\hat{\mathbf{I}}$ K, a^N - a = 0 y todos los elementos de K son las raíces de la ecuación x^N - x = 0. O sea: x^N - $x = (x - a_1).(x - a_2)....(x - a_n)$ $\hat{\mathbf{U}}$ K = $\{a_1, a_2, ..., a_N\}$.

El polinomio $x^N - x$ se descompone, pues, en K[x], en factores lineales, sin que esto ocurra para otro cuerpo intermedio H (H / P_k . $\subseteq H \subseteq K$), puesto que si $H^{-1} K$, entonces no contiene todos los ceros de $x^N - x$.

Como el polinomio $x^N - x$ tiene los coeficientes en P_k (o sea, $x^N - x$ \hat{I} $P_k[x]$), se tiene que el campo K queda determinado por dos números: por su subcuerpo primo P_k (o bien por su característica p) y por el número r tal que $N = p^r$, ya que su determinación quedaría reducida, entonces, a obtener el cuerpo de descomposición de $x^N - x$ \hat{I} $P_k[x]$, cuerpo de descomposición que es único, salvo isomorfismo. De esto se deduce que dos campos de Galois de igual orden son isomorfos.

Prop. 1.13:

Dado p primo y r entero positivo, existe un campo de Galois K, tal que $O(K) = p^r$.

En efecto:

Para todo p primo existe el cuerpo Z/pz de las clases de restos módulo p.

Sea P_k . = { 0, e, 2.e, ..., (p-1).e} uno de los infinitos cuerpos primos isomorfos a Z/pz, siendo $p = car(P_k)$.

Sea el polinomio $p(x) = x^N - x \hat{I} P_k[x]$, con $N = p^r$, y sea L un supercuerpo de P_k tal que es cuerpo de descomposición de todo polinomio de $P_k[x]$ en factores lineales.

Veamos que los ceros de $p(x) = x^N - x$ son todos distintos:

 $p'(x) = N.x^{N-1} - e = 0 - e = -e^{-1} O$ (pues N.x = 0, " $x \hat{I} L$). Entonces al ser p'(x) = 0, " $x \hat{I} L$, p(x) no tiene raices multiples.

Veamos que el conjunto $\{a_1, a_2, \ldots, a_N\}$ de los ceros de $p(x) = x^N - x$ es un cuerpo:

a)
$$\forall a_{i}, a_{j} \in K, a_{i}^{N} = a_{i} \wedge a_{j}^{N} = a_{j} \Rightarrow (a_{i} - a_{j})^{N} = \sum_{k=0}^{N} {N \choose k} a_{i}^{k} (-a_{j})^{N-k} =$$

$$= a_{i}^{N} - a_{j}^{N} = a_{i} - a_{j} \Rightarrow (a_{i} - a_{j})^{N} = a_{i} - a_{j} \Rightarrow a_{i} - a_{j} \in K.$$
b) $\forall a_{i}, a_{j} \in K, a_{i}^{N} = a_{i} \wedge a_{j}^{N} = a_{j} \Rightarrow (a_{i}.a_{j}^{-1})^{N} = a_{i}^{N}.(a_{j}^{-1})^{N} = a_{i}.a_{j}^{-1} \Rightarrow$

$$\Rightarrow a_{i}.a_{j}^{-1} \in K$$

Se acostumbra de denominar a este cuerpo K mediante $CG(p^r)$, o bien, $CF(p^r)$.

Prop. 1.14:

1°) El producto de los elementos no nulos de un campo de Galois es igual a -e.

2°) Si K = Z / pz, entonces " $x \hat{I} Z$, x^p • x (mod p). (Teorema de Fermat)

3°) Si K = Z / pz, entonces (p - 1)! o -1 (mod p). (Teorema de Wilson)

En efecto:

1°)
$$x^{N} - x = \prod_{i=1}^{N} (x - a_{i}) = (x - 0) \cdot \prod_{i=1}^{N-1} (x - a_{i}) = x \cdot \prod_{i=1}^{N-1} (x - a_{i}) \Rightarrow x^{N-1} - e = \prod_{i=1}^{N-1} (x - a_{i}) = \prod_{i=1}^{N-1} x + \prod_{i=1}^{N-1} a_{i} = x^{N-1} + \prod_{i=1}^{N-1} a_{i} \Rightarrow -e = \prod_{i=1}^{N-1} a_{i}$$

2°) si es K = Z / pz , K = CG (p) =
$$\mathbf{P}_k \mathbf{P} x^p$$
 o x (mod p), "x $\widehat{\mathbf{I}} Z$

3°) Si es K = Z / pz , K = CG (p) =
$$\mathbf{P}_k$$
 = {0,, e, 2.e, ..., (p-1).e} $\dot{\mathbf{U}}$ e = 1 \mathbf{P}
 $\dot{\mathbf{P}}$ \mathbf{P}_k = {0, 1, 2, ..., (p-1)} $\dot{\mathbf{P}}$ - 1 = 1.2. ... (p-1) $\dot{\mathbf{P}}$ (p-1)! ° -1

Prop. 1.15:

Si K es un campo finito tal que $O(K) = N = p^r$, entonces el grupo multiplicativo $K' = K - \{0\}$ es cíclico.

En efecto:

Sea $K' = K - \{0\}$. El orden de K' es O(K') = N - 1 = m. Vamos a comprobar que existe un elemento ξ de K' que genera al grupo multiplicativo (K', +).

Como los elementos de K verifican $x^N - x = 0$, los de K' verifican $x^{N-1} - e = 0$, o bien que $x^m = e$.

Sea la descomposición de m en factores primos la siguiente: $m = p_1^{a_1}.p_2^{a_2}....p_k^{a_k}$

 $x^{m/p_i}=e$ tiene m/p_i raíces en K', todas distintas. Eligiendo un u_i distinto de cualquiera de las raíces de la ecuación $x^{m/p_i}=e$. Se tiene:

llamando $u_i^{m/p_i^{a_i}} = e \Rightarrow c_i^{p_i^{a_i}} = \left(u_i^{m/p_i^{a_i}}\right)^{p_i^{a_i}} = u_i^m = e \Rightarrow \text{el orden de } c_i \text{ es divisor de } p_i^{a_i}$. Veamos que el orden de c_i es $p_i^{a_i}$ exactamente:

pues si $c_i^{p_i^{a_i}} = u_i^m \neq e \Rightarrow$ (pues y no es, por construcción, raíz de $x_i^{m/p_i^{a_i}} - e = 0$) entonces el exponente mínimo de c_i con el que se obtiene e: es $p_i^{a_i}$. De todo esto, $O(c_i) = p_i^{a_i}$.

Análogamente:

$$O(c_1) = p_1^{a_1}$$
, $O(c_2) = p_2^{a_2}$, ..., $O(c_k) = p_k^{a_k}$

Por lo cual, el elemento

$$\xi = c_1.c_2.....c_k \Rightarrow O(\xi) = O(c_1).O(c_2)...O(c_k) = p_1^{a_1}...p_2^{a_2}.....p_k^{a_k} = m$$

Es decir, en definitiva:

Existe un $\xi \in K'$ tal que su orden es el orden de $K' \Rightarrow K'$ es grupo multiplicativo cíclico.

El elemento generador ξ , que existe siempre en todo campo de Galois, recibe el nombre específico que se concreta en la definición siguiente.

Def. 1.8:

Se llama raíz primitiva de la unidad, de orden m, o bien, raíz m-sima de la unidad, en el cuerpo K, al elemento ξ generador del grupo cíclico conmutativo de orden m, $K' = K - \{0\}$.

Se puede extraer el siguiente corolario: *Todo cuerpo finito es conmutativo*. Pues todo grupo multiplicativo cíclico es conmutativo.

Prop. 1.16:

Todo campo de Galois es un cuerpo perfecto.

En efecto:

Un cuerpo K se dice *perfecto* si todo polinomio $f(x) \in K[x]$ irreducible es *separable*, es decir, no tiene raíces múltiples. Si un polinomio tuviera raíces múltiples, éstas anularían también al polinomio derivado f'(x). Veamos que esto no ocurre en el anillo K[x], cuando es K un cuerpo finito.

Si f(x) y f'(x) tuvieran una raíz común sería, para tal valor, f(x) = 0 y f'(x)= 0 y siendo f(x) irreducible, f'(x) = f(x).p(x), pero al ser grad f(x) > grad f $'(x) \Rightarrow f'(x) \equiv q(x) \equiv 0$

Para que $f'(x) \equiv 0$ es necesario y suficiente que f(x) sea de la forma:

$$f(x) = c_0 + c_1.xp + c_2.x^{2p} + ... + c_s.x^{sp}, c_i \in K$$

Pero en este caso no sería f(x) irreducible, pues:

$$\forall C_i \in K \Rightarrow c_i \stackrel{N}{-} - c_i = 0 \Rightarrow (ci \ pr \) - ci = 0 \Rightarrow (c_i \stackrel{pr-1}{-})^p - c_i = 0 \Rightarrow a_i \stackrel{p}{-} - c_i = 0.$$

siendo $a_i = c_i^{pr-1}$. O sea:

Luego, si f(x) es irreducible \Rightarrow f(x) y f'(x) no tienen raíces comunes \Rightarrow f(x)es separable $\Rightarrow \Rightarrow K$ es cuerpo perfecto.

1.5. **EXTENSION DE UN CUERPO:**

Veremos aquí el concepto de extensión de un cuerpo, de extensión por adjunción, de extensión simple, de extensión trascendente y de extensión algebraica, así como el hecho de que toda extensión por adjunción es una clausura de Moore en el retículo de los subcuerpos de un cuerpo dado.

Def. 1.9:

Se llama extensión de un cuerpo K a otro cuerpo L que contiene un subcuerpo isomorfo a K. Es claro que un cuerpo es una extensión de cualquiera de sus subcuerpos.

Def. 1.10:

Si el cuerpo L es extensión del cuerpo K, puede considerarse el espacio vectorial L sobre el cuerpo K. La dimensión de este espacio vectorial se llama grado de la extensión y se simboliza por (L : K) o (L /K), símbolos utilizados también para indicar que es L extensión sobre K y se lee "L sobre K".

Def. 1.11:

Si K es un cuerpo, H subcuerpo de K y S una parte cualquiera de K, el mínimo subcuerpo que contiene a H y a S se denomina extensión de H por adjunción de S y se simboliza por H(S).

Es claro que H(S) = (HUS)', es decir, se trata de la clausura de Moore en la famila de Moore de los subcuerpos de K.

Si S tiene un solo elemento, $S = \{a\}$, H(S) se dirá extensión simple del cuerpo H.

Prop. 1.17:

Si H es un subcuerpo de K y S_1 , S_2 son dos partes cualesquiera de K, se cumple

$$H(S_1US_2) = H(S_1)(S_2)$$

En efecto:

Por definición es:

$$H(S_1US_2) = (H U (S_1US_2))'$$
 (clausura de Moore)

$$H(S_1)(S_2) = (H(S_1)U(S_2))' = ((HUS_1)' U S_2)'$$
 (clausura de Moore)

- a) puesto que H, S_1, S_2 $\subseteq H(S_1)(S_2) \ \Rightarrow H \; (S_1 US_2) \subseteq H(S_1)(S_2)$
- b) puesto que H, $S_1 \subseteq H(S_1US_2) \Rightarrow H(S_1) \subseteq H(S_1US_2) \Rightarrow H(S_1) \subseteq H$ $(S_1US_2) \land S_2 \subseteq H(S_1US_2) \Rightarrow H(S_1)(S_2) \subseteq H(S_1US_2)$ Por tanto, de a) y de b), es $H(S_1)(S_2) = H(S_1US_2)$

En particular, $H(a_1, a_2, ..., a_n) = H(a_1)(a_2)...(a_n)$, es decir, se puede reemplazar la adjunción simultanea de n elementos del cuepo K por n adjunciones sucesivas.

1.6. **EXTENSIONES TRASCENDENTES Y ALGEBRAICAS:**

Definimos los conceptos de extensión trascendente y de extensión algebraica de un cuerpo, y comprobamos que todo campo de Galois es extensión algebraica simple de su subcuerpo primo.

Prop. 1.18:

Dado un cuerpo conmutativo K, un subcuerpo L, y un homomorfismo F: K[x] ® K[a], "a \hat{I} L, tal que "f(x) \hat{I} K[x], es F(f(x)) = f(a), se cumple que los anillos K[x]y K[a] son k-isomorfos.

En efecto:

Ker
$$F = \{f(x) \ \hat{I} \ K[x] / F(f(x)) = f(a) = 0\}$$

Los polinomios de ker F son, pues, los $t_0 + t_1 \cdot x + t_2 \cdot x^2 + \dots + t_m \cdot x^m$ tales que se verifica que

$$t_0 + t_1.a + t_2.a^2 + ... + t_m.a^m = 0$$

Descomponiendo canónicamente el homomorfismo F, se tiene:

$$\begin{array}{ccc} K[x] & \to & K[a] \\ \downarrow & & \uparrow \\ K[x]/\operatorname{Ker} F & \approx & K[a] \end{array}$$

De lo cual:

 $K[x]/Ker F \gg K[a]$ y es un K-isomorfismo, pues todo elemento de K permanece fijo.

Def. 1.12:

1°) Dado L supercuerpo de K, se dice que a \hat{I} L es trascendente sobre K sicualquier homomorfismo F de los definidos en *Prop. 1.18* es tal que $Kerf F = \{0\}$.

Esto es, si $a \hat{I} L$ es transcendente sobre K, entonces ningún polinomio no nulo $t_0 + t_1.x + t_2.x^2 + ... + t_m.x^m$ se anula para x = a.

2°) Dado L supercuerpo de K, se dice que a \hat{I} L es algebraico sobre K, si, para el homomorfismo F se tiene que $Ker\ F = \{0\}$.

Esto es, si a \hat{I} L es algebraico sobre K, entonces existen polinomios no idénticamente nulos $t_0 + t_1 \cdot x + t_2 \cdot x^2 + \dots + t_m \cdot x^m$ que se anulan para x = a:

$$t_0 + t_1.a + t_2.a^2 + \dots + t_m.a^m = 0$$

Def. 1.13:

- 1°) Una extensión L de K se dice trascendente si $\boldsymbol{\$}$ a $\hat{\boldsymbol{I}}$ L tal que a es transcendente sobre $K^* \mathbf{I} L / K^* \gg K$.
- 2°) Una extensión L de K se dice algebraica si \forall a \hat{I} L, a es algebraico sobre $K^* \mathbf{I} L / K^* \gg K$.

Prop. 1.19:

Sea F: K[x] ® K[a] tal que, "f(x) \hat{I} K[x], es F(f(x)) = f(a) y sea a \hat{I} Lalgebráico sobre K \mathbf{I} \mathbf{I} , es decir, Ker F \mathbf{I} $\{0\}$. Entonces se cumple que Ker F es ideal principal, primo y maximal y se verifica que $K[x] / Ker F \gg K[a] = K(a)$.

En efecto:

a) Ker F es principal por ser K[x] anillo principal. Sea p(x) \hat{I} K[x] la base de este ideal:

$$Ker F = (p(x))$$

b) Ker F es irreducible, pues caso contrario sería $p(x) = p_1(x).p_2(x)$ y $p(a) = p_1(a).p_2(a) = 0 \Rightarrow p_1(a) = 0 \quad v \quad p_2(a) = 0$ (pues K[a] es dominio de integridad) \Rightarrow p₁(x) \in Ker F v p₂(x) \in Ker F \Rightarrow contradictorio con que p(x) es base de Ker F.

Por tanto, p(x) es irreducible y Ker F = (p(x)) es ideal primo.

c) En un anillo principal, sin divisores de cero, todo ideal primo es maximal. Luego Ker F es, efectivamente, ideal principal, primo y maximal.

For our partie.
$$K[x] \quad \max imal \Rightarrow \begin{cases} K[x] \quad \max imal \\ K[x] \quad con \quad elem. \quad unidad \end{cases} \Rightarrow K[x]/KerF \quad cuerpo \Rightarrow \begin{cases} K[x]/KerF \quad cuerpo \\ K[x]/KerF \quad \approx K[a] \end{cases} \Rightarrow K[a] \quad cuerpo \end{cases}$$

Esto quiere decir que K[a] es cuerpo y K[a] \hat{I} K(a) \hat{V} K(a) es el mínimo cuerpo que contiene a K y a a. Por tanto, es K[a] = K(a).

Entonces:
$$K[x] / Ker F \approx K[[a] = K(a)]$$

Prop. 1.20:

Todo cuerpo finito es extensión algebraica simple de su subcuerpo primo.

En efecto:

Por Prop. 1.15 sabemos que todo elemento de $K' = K - \{0\}$ es de la forma e^N , donde e es la raíz (N -1)-sima de la unidad:

$$e^{N} - e = 0$$

es decir, \boldsymbol{e} es elemento de K algebraico sobre Π_k .

Por ser e generador de K', se tiene que K es el mínimo cuerpo que contiene a Π_k . у а *е*:

$$K = \Pi_k \cdot (\mathbf{e}) = \Pi_k \cdot [\mathbf{e}]$$

K es, pues, extensión simple de Π_k . y, como $e\hat{I}$ K es algebraico sobre Π_k , K es extensión simple de Π_{k} .

1.7. NOTA BIBLIOGRÁFICA:

- 1. Artin, E. Galois Theory.
- 2. Artin, E. Geometric Algebra
- 3. Birkhoff-Mc Lane. Algebra moderna.
- 4. Birkhoff, G., Bartee, T.C., Modern Applied Algebra, Mc Graw-Hill, 1970.
- 5. Bourbaki. Algebre, Ch. II 3ra. Ed.
- 6. Bourbaki. Algebre, Ch. VII 2da. Ed.
- 7. Bourbaki, N. Algèbre.
- 8. Burton, D.M., Introduction to Modern Abstract Algebra, Addison-Wesley, 1967.
- 9. Caton, G. y Grossman, S. J., Linear Algebra.,., Ed. Wordsworth Publ. Co. 1980
- 10. Childs, L., A Concrete Introduction to Higher Algebra, Springer-Verlag, 1979.
- 11. Cignoli, R. O., Apuntes de la materia Lógica (Computadores): Algebras de Boole.
 - Cálculo proposicional.
- 12. Fraleigh, J. A First Course in Abstract Algebra.
- 13. Fraleigh, J.B., A First Course in Abstract Algebra, Addison-Wesley, 1967.
- 14. Friedberg, S, Insel, A, Spence, L., Linear Algebra, Prentice Hall (1979).
- 15. Gamtmacher, F. R., The Theory of Mathematics., Vol. I y II., Ed. Chelsea, 1974.
- 16. Gentile, E., Estructuras algebraicas I. (Public. OEA).
- 17. Gentile, E., Notas de Algebra (EUDEBA).
- 18. Gentile, E., Notas de Algebra II, Editorial Docencia.
- 19. Godement, R., Cours d'algèbre.
- 20. Herstein, I. N., Algebra Moderna.
- 21. Herstein, I. N., Topics in Algebra.
- 22. Hoffman, K y R. Kunze, Algebra lineal, Prentice Hall.
- 23. Hoffman, K, y R. Kunzc, Linear Algebra, Prentice Hall, 1971.
- 24. Hungerford, T.W., Álgebra.
- 25. Jacobson, N., Lecture in Abstract Algebra, Princeton, N.J. Van Nostrand, 1951-1964.
- 26. Jacobson, N. Basic Algebra I.
- 27. Kaplansky, I. Linear Algebra and Geometry
- 28. Lang, Serge, Algebra lineal, Addison Wesley.
- 29. Larotonda, A., Algebra lineal y Geometría. Eudeba.
- 30. Lipschutz, S., Algebra lineal, Serie Schaum.
- 31. Rotman, J., The Theory of Groups.
- 32. Strang G.,, Algebra Lineal con aplicaciones., Ed. Fondo Educativo Interamericano, 1981.
- 33. Van der Waerden, B.L. Moderne Algebra.
- 34. Vargas, J.A. Algebra Abstracta.
- 35. Zariski, O. y Samuel, P. Commutative Algebra I y II.