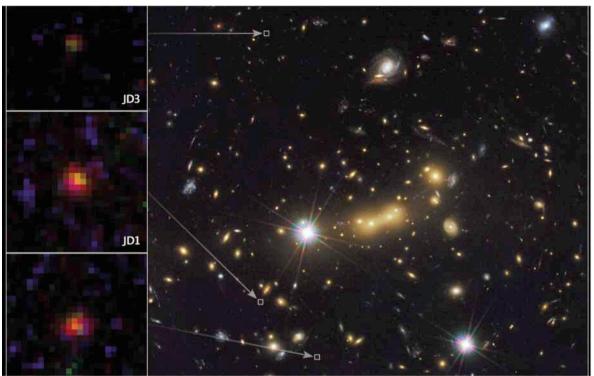
## Dos maneras de mirar al pasado

ANALIZAMOS LOS MÉTODOS QUE EMPLEAN LOS ASTRÓNOMOS PARA AVERIGUAR CÓMO ERA EL UNIVERSO EN ETAPAS ANTERIORES


Por Enrique Pérez Montero (IAA-CSIC) EL ESTUDIO DEL PASADO ES ALGO EMOCIONANTE Y VERTIGINOSO, QUE CONCURRE EN ÁREAS MUY DIFERENTES y abarca tanto el ámbito de las humanidades como el de distintas especialidades científicas. Lo que distingue el objeto de estudio de los historiadores, los geólogos, los paleontólogos o los astrónomos son más las escalas de tiempo involucradas que una diferencia de ánimo real por conocer qué caminos siguieron la naturaleza o nuestros antepasados para que nosotros nos encontremos aquí y ahora en las circunstancias en que estamos, que es común a todos estos campos de estudio. De hecho, aunque la metodología varíe tanto de una especialidad a otra, las estrategias y razonamientos que condicionan el proceder del astrónomo no se diferencian en el fondo tanto de los que siguen, por ejemplo, un biógrafo de un emperador romano o un experto en arte rupestre.

## Más lejos, más atrás en el tiempo


En astrofísica y en cosmología hay dos maneras básicas de estudiar el pasado. La primera y más reconocible en la percepción popular de mirar más y más lejos para ver los objetos tal como eran en el pasado. La principal fuente de información acerca de la naturaleza de los astros es la luz que emiten y que, en su camino hacia nosotros, ha interactuado con otros cuerpos que también pueden ser estudiados por la huella que han dejado en ese patrón luminoso. Dado que la luz tiene una velocidad finita, enorme pero limitada, y dadas las absurdamente grandes distancias que separan unos cuerpos de otros en el universo, la luz de muchos astros tarda largos lapsos de tiempo hasta ser detectada por nuestros telescopios e instrumentos de medida, dándonos una impronta de los cuerpos que la emitieron tal y como eran en el instante de esa emisión.

A veces esa impresión del enorme tiempo transcurrido entre la emisión de luz por parte de una estrella y su llegada a nuestros telescopios da lugar a afirmaciones algo exageradas, como la sentencia atribuida al gran astrónomo y músico, William Herschel, descubridor del planeta Urano y del disco de la Vía Láctea. Herschel dijo que probablemente todas las estrellas que veíamos en el cielo no eran sino fantasmas de sí mismas, ya que en el momento en que su imagen nos alcanzaba ya habrían perecido. En realidad todas las estrellas del cielo nocturno pertenecen a nuestra propia Galaxia, que tiene un radio de unos cincuenta mil años luz. Es decir, la luz de una estrella que habita en el extrarradio del disco de la Galaxia tarda cincuenta milenios en llegar a su centro, si no es absorbida antes por las densas nubes de polvo y gas que rellenan este disco. Las vidas de las estrellas son muy variables, y pueden oscilar entre los pocos millones de años de las estrellas más masivas y luminosas hasta los cientos de miles de millones de años que pueden llegar a vivir las estrellas enanas rojas. Es decir, que seguramente todas las estrellas que vemos en el cielo nocturno siguen ahí a pesar de los milenios pasados desde que nos enviaron su luz. Además, la mayoría de esas estrellas no están tan lejos en nuestra Galaxia, sino que pertenecen a lo que se llama la vecindad solar, por lo que normalmente es difícil ver a simple vista estrellas que estén más lejos de mil años luz.

Por el contrario, la afirmación de Herschel no se vuelve nada errónea en el caso de las galaxias más lejanas. Las distancias que separan unas galaxias de otras es del orden de los millones de años luz. La galaxia espiral más semejante a la nuestra es Andrómeda, que se encuentra a dos millones y medio de años luz. Así, la luz que estudian los astrónomos de los miles de millones de estrellas de esta galaxia partió de la misma antes de que el propio ser humano caminara sobre la superficie de nuestro



Línea histórica de la evolución del universo.



La galaxia MACS0647-JD, una de las más distantes conocidas, cuya luz fue emitida solo cuatrocientos veinte millones de años después del Big Bang (cuando el universo tenía un 3% de su edad actual). Debido al efecto de lente gravitatoria, generado por un cúmulo de galaxias situado en la trayectoria de la luz de MACS0647-JD, su imagen aparece amplificada y por triplicado. Crédito: NASA/ESA.

planeta. No obstante, las galaxias rellenan todo el volumen del universo observable y, por tanto, pueden ser observadas a lo largo de sus distintas etapas evolutivas desde la creación misma del universo, hace trece mil ochocientos millones de años. Esa es justo la barrera observacional que la luz impone a todo estudio basado en ella.

## Más cerca del Big Bang

Los muestreos profundos del cielo realizados con los telescopios espaciales y los grandes observatorios astronómicos con espejos de hasta diez metros de diámetro nos están permitiendo obtener imágenes y detalles de galaxias apenas mil millones de años después del Big Bang. En esta época el universo tenía un aspecto muy diferente al que tiene ahora. El volumen disponible era menor, por lo que el espacio estaba más densamente poblado por estas galaxias jóvenes que interactuaban y chocaban con mucha mayor frecuencia para dar lugar a galaxias aún más grandes. El número de galaxias más pequeñas era mayor por tanto, y eran más luminosas y compactas. Su brillo era mayor en relación a su tamaño porque estaban en la época en que se formaban estrellas con más intensidad, alimentando de manera simultánea al agujero negro supermasivo que todas ellas tienen en su centro y dando lugar a brillantes emisiones en rayos X y en radio.

Las imágenes de las galaxias más lejanas y, por tanto, más antiguas, se han obtenido también gracias a la combinación del uso de los grandes telescopios actuales con un efecto que se produce de manera natural y que ayuda a mirar aún más lejos. Según la teoría de la relatividad general de Einstein, la luz sufre cambios apreciables en su trayectoria cuando pasa cerca de una distribución muy masiva, como puede ser un cúmulo de galaxias. Eso provoca que la luz de cuerpos más lejanos y que, en principio, se dispersa al alejarse de su lugar de emisión, puede volver a converger tras pasar por una de estas aglomeraciones de masa. Es lo que se conoce como efecto de lente gravitacional. Usando esta técnica se han podido tomar imágenes de galaxias poco tiempo después de su formación. Actualmente el récord lo ostenta la galaxia MACS J0647+7015, que se encuentra a una distancia de trece mil cuatrocientos millones de años luz de la Tierra, apenas cuatrocientos millones de años después del Big Bang.

Esta manera de estudiar el pasado mirando directamente cómo era el universo en cada época podría relacionarse con la manera que los eruditos tienen de estudiar el pasado y la historia a través del legado artístico cuando este no ha sufrido ningún deterioro. Poder leer una novela, admirar una pintura o escuchar una pieza musical tal y como fueron creadas originalmente nos transporta al pasado y nos ayuda a entender la época y la mentalidad de los artistas que las crearon.

Esta es también la manera que algunos antropólogos tienen de estudiar el pasado de las primeras tribus humanas, desplazándose a lugares de África y Sudamérica cuyos pobladores hayan tenido el menor contacto posible con la civilización para analizar su comportamiento y sus tradiciones, que podrían ser comunes a las que nuestros antepasados tenían hace miles de años. No obstante, el estudio del pasado tanto desde el punto de vista estrictamente histórico como del de la historia natural biológica y geológica tiene también otra fuente de información mucho más rica, pero también más difícil de interpretar. Se trata del estudio de los restos que pueden ser analizados no tal y como fueron creados hace muchos siglos o milenios, sino en la época presente, alterado su aspecto y su distribución por el paso del tiempo. Es esta técnica la que emplean los arqueólogos y los paleontólogos y geólogos desde el punto de vista científico. Esta otra manera de estudiar el pasado que, lejos de transportarnos directamente a él, trae sus vestigios a la época presente, también es usada por los astrónomos.

Esta manera de recopilar datos, por ejemplo, es muy habitual en el estudio de los cuerpos del Sistema Solar, que son accesibles mediante el empleo de misiones espaciales capaces de alcanzarlos y tomar muestras de datos. Así es como el rover Curiosity de la NASA ha analizado la superficie del planeta Marte en busca de antiguos

restos de formas de vida y del efecto que la presencia de agua pudo tener en este planeta. Otro ejemplo es la exitosa misión de la Agencia Espacial Europea Rosetta, que logró ponerse a la altura del cometa Churyumov-Gerashimenko e incluso posar el módulo Philae en su superficie para analizar su composición. Se piensa que los cometas son los restos de la época en la que se formó el Sistema Solar, por lo que su estudio es de gran interés para conocer cómo era el Sistema Solar en su origen, cómo se formaron los planetas y por qué son tan diferentes entre ellos.

## Estudiar lo cercano para conocer lo lejano

En un entorno algo más lejano, y ya solo alcanzable a partir del estudio de las ondas luminosas, el análisis de los objetos de nuestra propia Galaxia nos ayuda a entender su pasado. Esto tiene la ventaja, en relación a la investigación de las primeras galaxias a partir de sus imágenes directas, en el grado de detalle que podemos alcanzar. Ni siquiera los grandes telescopios son capaces de tomar imágenes de las estrellas individuales de las galaxias más lejanas, sino que solo permiten acceder a la luz integrada de las mismas. Por el contrario, en nuestra propia Galaxia podemos identificar y estudiar en detalle estrellas individuales que quizá empezaron a brillar en

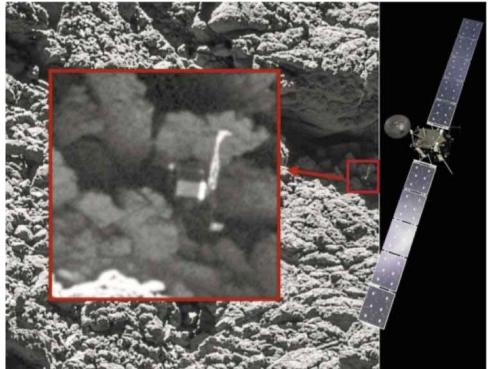



Imagen del módulo Philae sobre la superficie del cometa Churyumov-Gerasimenko, tomada por la misión Rosetta. Fuente: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

la misma época en que la propia galaxia se formó. Este es el caso de la estrella J0815+4729, que ha sido identificada por un grupo de astrónomos del Instituto de Astrofísica de Canarias como una de las más viejas de nuestra Galaxia. Esta estrella no se encuentra en el disco, sino en el halo de nuestra Vía Láctea. El halo es una enorme esfera que rodea el disco y que también contiene estrellas y cúmulos muy antiguos, aunque con una densidad de estrellas mucho menor que el disco, donde se encuentra nuestro Sistema Solar. Según los investigadores de este estudio, la estrella en cuestión es muy deficiente en elementos químicos que solo pudieron producirse en el interior de estrellas de generaciones sucesivas y posteriores y calculan que se formó solo trescientos millones de años después del Big Bang. Es decir, es más antigua que la ima-

gen de la galaxia más lejana a la que hemos tenido acceso hasta ahora. Otro proyecto que estudia en detalle los objetos cercanos para comprender mejor su pasado y los mecanismos que llevaron a su formación y estado actual es CALIFA, un proyecto con el protagonismo del Instituto de Astrofísica de Andalucía en el que he tenido la gran fortuna de colaborar. CALIFA es un muestreo de varios cientos de galaxias en un volumen del universo no muy lejano a la Vía Láctea y que cubre distancias de hasta treinta millones de años luz, lo que no representa en términos temporales mucho tiempo en relación a la vida de una estrella. Este muestreo se ha llevado a cabo con un instrumento montado en el mayor telescopio del observatorio de Calar Alto, en Almería, que es capaz de desarrollar mapas con la distribución espectral de la luz emitida desde cualquier posición de estos objetos. En la práctica esto significa que se puede estudiar la edad, composición química y velocidad de las estrellas que forman estas galaxias en cualquier lugar de sus discos y relacionar los mapas resultantes de estas propiedades con la forma, brillo y masa de las galaxias mismas, ayudando a desentrañar su historia y su origen.

De esta forma, entre los resultados alcanzados por CALIFA para una muestra de galaxias que nos permite sacar conclusiones con valor estadístico se encuentra la evidencia de que las galaxias espirales se han ido formando desde dentro hacia fuera. La zona central de estas galaxias está compuesta por una región denominada bulbo con forma elíptica y muy antiqua, cuyo brillo y masa dependen del de toda la galaxia. Con posterioridad al bulbo se fue formando, de dentro afuera, el resto del disco en aquellas regiones con una mayor densidad de gas; además, se producen movimientos dinámicos del disco que generan cierta redistribución de las poblaciones estelares y los elementos químicos eyectados en las explosiones de supernova tras la muerte de las estrellas más jóvenes. Se da la circunstancia de que, en nuestra propia Galaxia, nuestra falta de perspectiva desde el interior del disco nos ha impedido contestar correctamente a la pregunta de en qué lugar se formó nuestro Sol, ya que muchas de sus propiedades no coinciden con la posición que actualmente ocupa en el disco de nuestra Galaxia. Otra cuestión que parece que CALIFA ha sido capaz de acotar con observaciones es cómo las galaxias dejan de formar estrellas. Es sabido que, a diferencia de las galaxias espirales, las galaxias elípticas no forman estrellas, ya que consumieron el gas necesario para crear nuevas gene- raciones de astros y este proceso se podría haber producido en estas galaxias de una manera similar, pero inversa, al de la formación estelar. Todos estos procesos se ven alterados de manera dramática en aquellos entornos en que la interacción entre galaxias y la caída de gas desde fuera de las mismas modifican estos procesos de crecimiento y evolución.

Como podemos apreciar, por tanto, la astronomía hace uso de técnicas muy diferentes cuyo fin no es muy distinto del de otras áreas del conocimiento que tratan de comprender y desvelar el pasado de nuestro planeta y de nuestra especie. Tanto el estudio de los restos que han llegado hasta nosotros a pesar del paso del tiempo como la contemplación de los elementos del pasado tal y como eran en el momento de su creación, son lícitos y se complementan entre ellos y ayudan a definir más lo que sabemos acerca de nosotros mismos y de nuestro origen, cuestiones estas que siempre están entre las que más despiertan la curiosidad y el ansia de saber que son propios de nuestra especie.

Enrique Pérez Montero (IAA-CSIC)
Este artículo aparece en el número 56, octubre 2018,
de la revista Información y Actualidad Astronómica,
del Instituto de Astrofísica de Andalucía (IAA\_CSIC)